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Abstract — Thumb-2 is the most recent instruction set 

architecture for ARM processors which are one of the most 

widely used embedded processors. In this paper, two extensions 

are proposed to improve the performance of the Thumb-2 

instruction set architecture, which are addressing mode 

extensions and sign/zero extensions combined with data 

processing instructions. To speed up access to an element of an 

aggregated data, the proposed approach first introduces three 

new addressing modes for load and store instructions. They are 

register-plus-immediate offset addressing mode, negative 

register offset addressing mode, and post-increment register 

offset addressing mode. Register-plus-immediate offset 

addressing mode permits two offsets and negative register offset 

allows offset to be a negative value of a register content. Post-

increment register offset mode automatically modifies the offset 

address after the memory operation. The second is the sign/zero 

extension combined with a data processing instruction which 

allows the result of a data processing operation to be sign/zero 

extended to accelerate a type conversion. Several least 

frequently used instructions are reduced to provide the encoding 

space for the new extensions. Experiments show that the 

proposed approach improves performance by an average of 

8.6% when compared to the Thumb-2 instruction set 

architecture. 

 
Index Terms — Instruction Set Architecture; Thumb-2; 

ARM; Addressing Mode; Sign/zero Extension; Embedded 

Processor.  

 

I. INTRODUCTION  

ARM processor is one of the most widely used embedded 

processors, which is adopted in smartphones, tablets, laptops, 

consumer electronics, and various electronic devices. It is 

estimated that about 180 billion ARM-based chips have been 

shipped until 2020, including the 6.7 billion chips in the 

fourth quarter of 2020 [1]. 

In the embedded systems, small code size is often required 

because the memory size directly impacts on the cost of the 

system. To solve this problem, dual instruction set processors 

such as ARM/Thumb [2] and MIPS/MIPS16 [3] are 

presented which provides two separate instruction sets which 

are a normal instruction set and a compressed instruction set. 

The compressed instructions are a subset of the frequently 

used normal instructions, and they are decompressed into 

normal instructions during the instruction decoding stage [2]. 

Contrary to the separate instruction sets, Thumb-2 

architecture [4] is proposed for ARM Cortex processors to 

meet both high performance and small code size in which a 
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single instruction set architecture provides both the 16-bit 

Thumb instructions and additional 32-bit instructions which 

can be freely intermixed with each other. 

Researches have been made to improve the ARM/Thumb 

instruction set architecture [5]-[27]. However, little attentions 

have been paid to the extension of specific modes such as 

addressing mode and sign/zero extension for the ARM 

instruction architectures. To improve performance and 

compression efficiency of the Thumb-2 instruction set 

architecture (ISA), this paper suggests a new instruction set 

architecture, named ABEX (Addressing mode extension and 

sign/zero Bit EXtension combined with data processing), 

which introduces efficient addressing modes for load and 

store instructions, and the sign/zero extension combined with 

data processing to accelerate a type conversion. 

The rest of this paper is organized as follows. Section II 

provides the review of the related works. Section III presents 

the proposed instruction set design, and Section IV provides 

experimental results. Conclusions are presented in Section V. 

 

II. RELATED WORK 

Numerous approaches have been proposed to enhance the 

32-bit ARM ISA. The ARM DSP extension [5] introduced in 

ARMv5 adds new DSP instructions to the ARM instruction 

set to accelerate signal processing applications. It supports the 

16-bit multiplication instruction and the saturated add and 

subtract instructions, which provides up to 70% performance 

improvement in audio applications. This extension is 

incorporated in various processors such as ARM926EJ-S, 

ARM946E-S, and ARM966E-S. 

The SIMD (Single Instruction Multiple Data) instructions 

in ARMv6 simultaneous operate on two 16-bit or four 8-bit 

values packed in a 32-bit register. More than 60 instructions 

are added which mainly targets multimedia applications, and 

the SIMD extension achieves 75% performance improvement 

for audio and video processing applications. This architecture 

is implemented in the ARM1136J(F), ARM1156T2(F), 

ARM1176JZ(F), and ARM11 MPCore processors. 

The ARMv7 architecture employs the advanced SIMD 

extension called NEON [6] for the ARM Cortex-A 

processors, which provides flexible and powerful 

accelerations for multimedia and signal processing 

applications such as video codec, speech and audio codec, 

graphics, and image processing. The NEON instructions can 

operate on vectors stored in the 64-bit double word and 128-
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bit quad word vector registers.  

The ARMv8 architecture [7]-[8] introduces a 64-bit 

architecture, named AArch64, and a new A64 instruction set 

to the existing instruction set to support the 64-bit operation 

and the virtual addressing. ARMv8 supports two execution 

states, AArch64 for 64-bit operation and AAarch32 for 32-bit 

operation. A64 has 31 64-bit general-purpose registers. This 

architecture includes instruction-level cryptographic 

instructions while dropping LDM/STM and most conditional 

execution instructions. 

Programs often manipulate data at subword level in the 

embedded system. Li and Gupta [10] propose a bit section 

extension to manipulate subword data which occur in 

network and multimedia applications. The new instructions 

can reduce explicit instructions for packing and unpacking 

narrow width data into memory words. 

Increasing the number of physical registers would improve 

performance, but this requires additional bits to encode the 

register number. To maintain the width of 32-bit ARM 

instructions, references [11]-[12] observe that the conditional 

field is underutilized, and thus, trade the conditional field for 

the register field in the instruction, and use the 4-bit 

conditional field to encode the extra registers, which allows 

the number of physical registers to be doubled from 16 to 32 

without increasing code size. 

Bos et al. [13] propose the parallel computation model of 

the Montgomery multiplication to improve performance in 

the public-key cryptography applications. They evaluate the 

proposed approach on the ARM platform with NEON 

technology and show that it is necessary to incorporate new 

256-bit SIMD instructions with two-way integer multipliers 

in the instruction set. 

Erich et al. [14] evaluate ARM Cortex-M0+, ATmega, and 

MSP430 microprocessors in runtime, chip area, power, and 

energy characteristics for elliptic curve cryptography. The 

results show that the Cortex-M0+ is the fastest and most 

energy efficient processor. They present the resource-saving 

scalar multiplication algorithm, and integrate instruction set 

extensions for these processors. 

Murray et al. [15] improve the efficiency of the instruction 

set extension generation. The proposed approach integrates 

the exploration of source-level code transformations and the 

identification of instruction set extensions. The proposed 

framework is based on the Intel XScale processor which is 

the Intel’s implementation of the ARMv5 architecture. The 

approach improves performance by 49% on two benchmark 

suites. 

Other techniques focus on enhancing the 16-bit Thumb 

instruction set architecture. In 16-bit Thumb, most 

instructions can reference only 8 registers out of 16 physical 

registers. Krishnaswamy and Gupta [17] address this 

inefficiency and introduce a new register mask set instruction 

to specify the visible set of registers. With the use of the mask 

instruction, every instruction can access all the registers. 

However, many mask instructions are emitted to change the 

visible subset of registers, resulting in the increase of code 

size. 

Krishnaswamy and Gupta introduce augmenting 

extensions [18] to coalesce consecutive instructions and 

convert those instructions to a single 32-bit ARM instruction 

during the decode stage. Because some pairs of Thumb 

instructions are equivalent to a single ARM instruction, the 

compiler replaces patterns of Thumb instructions by the 

equivalent sequences of augmented Thumb instructions. 

Each augmented instruction is coalesced with the following 

non-augmented Thumb instruction in the decode stage which 

is redesigned to detect augmenting instructions and perform 

coalescing to generate the ARM instructions.  

Lee et al. [19]-[20] construct the original register file into 

the banked one and provide a new bank change instruction 

for register allocation, and additional register allocation 

technique for this banked structure. 

Kim [21]-[22] proposes the addressing mode extension to 

the 16-bit Thumb architecture [21], and two addressing 

modes to the Thumb-2 architecture [22]. On the EPIC 

processors, Fiskiran et al. [23] present the addressing modes 

for the AES algorithms. However, it demands a considerable 

amount of hardware circuitry. 

To reduce code size without performance degradation, 

Canedo et al. [24] propose the queue-based reduced 

instruction set and the code generation algorithm optimized 

for the proposed instruction set. The proposed approach can 

generate 26% more compact code when compared to 

ARM/Thumb without reducing the parallelism in the 

program. 

 

III. INSTRUCTION SET DESIGN 

In the offset addressing mode in the Thumb-2 architecture, 

an effective address is calculated as the sum of an offset value 

and the address in a base register. Offset can be specified in 

one of three types which are immediate value, the content of 

a register, a scaled value in a register, but the combination of 

offsets is not allowed. This degrades performance when 

accessing an elements of array structures. Another restriction 

is that negative register offset addressing mode is not 

supported which subtracts an offset value in a register from 

the address in a base register when forming the effective 

address. 

In addition to offset addressing mode, Thumb-2 also 

provides post-indexed addressing mode where a base address 

is used as an effective address, which can be updated to the 

next memory location. However, this addressing mode is not 

efficient for consecutive memory addressing in which an 

offset value is required to be modified after each memory 

operation. 

These limitations often lead to an extra ADD or SUB 

instruction to compute or update the effective address when 

accessing elements in an aggregated data such as an array. To 

reduce these limitations, ABEX introduces three new 

addressing modes, which are named in this paper register-

plus-immediate offset addressing mode, post-increment 

register offset addressing mode, and negative register offset 

addressing mode. Register-plus-immediate offset addressing 

mode permits both a register offset and an immediate offset 

where the effective address is the sum of a base address and 

two offsets. Post-increment register offset addressing mode 

combines register offset addressing mode and post-indexed 

addressing mode in Thumb-2, which calculates the effective 

address as the sum of the base address and the offset address, 

and automatically modifies the offset address after the 

memory operation. Negative register offset addressing mode 
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subtracts an offset value in a register from the base address 

when forming an effective address. 

In addition to these new addressing modes, ABEX 

provides the ability to sign/zero extension for the result of the 

data processing operation. The Thumb-2 architecture already 

provides distinct sign/zero-extend instructions such as SXTB 

(Signed eXTend Byte) and extend-and-add instructions such 

as UXTAB (Unsigned eXTend and Add Byte) and SXTAH 

(Signed eXTend and Add Halfword). ABEX introduces 

sign/zero extension to the results of ADD, SUB, AND, ORR, 

ORN, EOR, BIC, ADC, SBC, and RSB operations. 

Almost all the opcodes are already used in Thumb-2. 

Therefore, it is required to reduce several instructions to give 

space for the new extensions. Three unfrequently used 

instructions are selected which has a sufficient number of 

operand bits. They are the ADD immediate to PC (Program 

Counter), LDMIA (Load multiple) and STMIA (Store 

multiple) instructions. The ADD immediate to PC (Program 

Counter) instruction, normally denoted by ADR (ADdress to 

Register), adds an immediate value to the PC value, and 

writes the result to the destination register. The LDMIA and 

STMIA instructions transfer data between memory and a 

subset of the general-purpose registers. In each instruction, 

the destination register field, or the register list field is 

reduced by one bit, resulting in one free bit. This bit is used 

to distinguish between a reduced Thumb-2 instruction and a 

new ABEX instruction. 

The performance degradation by this modification is minor 

by the reductions because the reduced instructions are not 

frequently used. On average, the restricted ADR, LDMIA, 

and STMIA instructions that use disabled registers only 

account for 0.000115%, 0.000118%, and 0.000118% of the 

total dynamic cycles, respectively. Details are discussed in 

Section 4. 

Fig. 1 shows the modifications to the 16-bit ADR 

instruction format in Thumb-2 to support two addressing 

modes and sign/zero extended data processing instructions. 

In the ADR instruction format, the size of a destination 

register field is reduced from three to two, whereby saving bit 

10. This bit is zero for the original ADR instruction and one 

for the ABEX instructions. Thumb-2 enforces 16-bit 

alignment on all instructions. Thus, the 32-bit Thumb-2 

instruction is treated as two halfwords, hw1 (first halfword) 

and hw2 (second halfword) where hw1 is at the lower address 

whereas the 16-bit instructions have only first halfword. The 

bit 9 of hw1 specifies the new instruction type, which is zero 

for the new addressing modes and one for the extended data 

processing operations. The bit 11 of hw2 distinguishes 

between two addressing modes negative register offset 

addressing mode and post-increment offset addressing mode. 

In post-increment offset addressing mode, bits 10 to 8, and 

bits 7 to 4 of hw2 specify the left shift amount, and the post-

increment immediate value, respectively. For the extended 

data processing instructions, bits 7 to 4 of hw1 and bits 15 to 

14 of hw2 encode the data operation named DOP, and the 

extension operation named EOP, respectively. Bits 13 to 12 

of hw2 identify the second operand type which can be 

register, scaled register, or immediate. For the scaled register 

type, bits 5 to 4 of hw2 encode the shift type which is one of 

LSL (Logical Shift Left), LSR (Logical Shift Right), ASR 

(Arithmetic Shift Right), and ROR (Rotate Right). Two bits 

in bits 7 to 6 encode the shift amount. 

 

hw1 

15    11 10  8 7       0 

                1 0 1 0 0 Rd imm8 

ADD Rd, PC, #<imm8>, Rd: in the range of R0-R7 

(a) 

hw1 

15    11 10 9 8 7       0 

                1 0 1 0 0 0 Rd imm8 

ADD Rd, PC, #< imm8>, Rd: in the range of R0-R3 

hw1 hw2 

15     10 9 8 7 6 5 4 3   0 15   12 11 10  8 7   4 3   0 

                                1 0 1 0 0 1 0 S U size L Rn Rt 0 0 0 0 0 0 0 0 Rm 

<LDR|STR><size> Rt, [Rn, -Rm] 

Negative register offset addressing mode 

1 0 1 0 0 1 0 S U size L Rn Rt 1 shift imm4 Rm 

<LDR|STR><size> Rt,[Rn,Rm {,LSL #<shift>}],#<imm4> 

Post-increment register offset addressing mode 

 
hw1 hw2 

15     10 9 8 7   4 3   0 15 14 13 12 11   8 7 6 5 4 3   0 

                                1 0 1 0 0 1 1 0 DOP Rn EOP 0 1 Rd 0 0 0 0 Rm 

<DOP><EOP> Rd, Rn, Rm 

 

1 0 1 0 0 1 1 0 DOP Rn EOP 1 0 Rd imm2 type Rm 

<DOP><EOP> Rt, Rn, Rm {, LSL|LSR|ASR|ROR #<imm2>} 

1 0 1 0 0 1 1 0 DOP Rn EOP 1 1 Rd imm8 

<DOP><EOP> Rt, Rn, #<imm8> 

 

DOP: AND|BIC|ORR|ORN|EOR|ADD|ADC|SBC|SUB|RSB 

 

EOP: SH (Signed extend Halfword) | SB (Signed extend Byte) |  
UH (Unsigned extend Halfword) | UB (Unsigned extend 
Byte)  

(b) 

Fig. 1. Thumb-2 ADR instruction format and its corresponding ABEX 
instruction format: (a) Thumb-2 format, (b) ABEX format. 

 

Fig. 2 shows the modifications to the 16-bit LDMIA and 

STMIA instructions where the transfer list is reduced from 

R0-R7 to R0-R6 by excluding register R7. The excluded bit 

is used for register-plus-immediate offset addressing mode 

for the load and store instructions. The bit 7 of hw1 is zero 

for the 16-bit LDMIA/STMIA instruction and one for the new 

ABEX instructions, which are 32-bit wide. ABEX allocates 8 

bits to the immediate field similar to the Thumb-2 immediate 

instructions, which is encoded in bits 11 to 4 of hw2. The A 

bit distinguishes between ADD (A=1) immediate and SUB 

(A=0) immediate. Bits 11 to 10 of hw1 determine the scale 

factor for the index register, Rm. Among various shift types 

and amounts, 1-bit, 2-bit, and 3-bit left shifts are supported 

where 1-bit and 2-bit left shifts are useful for accessing 16-bit 

and 32-bit arrays, respectively. Three registers are encoded in 
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the same places in the Thumb-2 ISA. 

 

hw1 

15    11 10  8 7       0 
                1 1 0 0 L Rn 8-bit register list 

LDMIA/STMIA Rn!, <8-bit register list> 

(a) 

hw1 

15    11 10  8 7 6      0 
                1 1 0 0 L Rn 0 7-bit register list 

LDMIA/STMIA Rn!, <7-bit register list> 

 

hw1 hw2 
15   12 11 10 9 8 7 6 5 4 3   0 15   12 11       4 3   0 

                                1 1 0 0 shift A S 1 size L Rn Rt imm8 Rm 

<LDR|STR><size> Rt, [Rn, Rm {, LSL #<shift>}, #+/-<imm8 >] 

Register-plus-immediate offset addressing mode 

(b) 

Fig. 2. Thumb-2 LDM/STM instruction format and its corresponding 
ABEX instruction format: (a) Thumb-2 format, (b) ABEX format. 

 

PSR (Program Status Register) can be used to distinguish 

between ABEX mode and Thumb-2 mode if needed. Four 

bits, bits 23 to 20, are unused in the register, and one of them 

such as bit 23 can be used to indicate the ABEX extension, 

which is one for ABEX mode and zero for Thumb-2 mode. 

Consider the hardware circuitry to support ABEX. One 32-

bit adder is required for register-plus-immediate offset 

addressing mode and post-increment register offset 

addressing mode. The new post-extended data processing 

requires a sign/zero extension logic to be connected to result 

operand of a data processing operation, MUX, and control 

logics. 

 

IV. EVALUATION 

Fig. 3 shows the performance of the proposed approach, 

ABEX, compared to the Thumb-2 ISA. Experiments are 

performed on the FacSim simulator [28] targeting the ARM 

Thumb-2 Cortex-M3 processor [29]. The benchmarks are 

gzip, susan, pegwit, adpcm, blowfish, and stringsearch 

programs. Gzip is a GNU zip program. Susan is the noise 

reduction image filter program. Pegwit performs the public-

key encryption and authentication. Adpcm is a simple audio 

codec. Blowfish is a symmetric block cipher, and 

stringsearch, denoted by strsearch in this paper, searches for 

given words in phrases. Gzip is from SPEC2000 [30], Susan, 

adpcm, blowfish, and strsearch are from Mibench [31]. For 

each program, Thumb-2 assembly code generated by the 

compiler is post-processed and compacted into ABEX code. 

The speedup is calculated by the ratio of the number of total 

cycles of Thumb-2 code and that of ABEX code. In the six 

benchmark programs, performance is improved by an 

average of 8.6% compared to the Thumb-2 ISA. The most 

significant improvement is achieved in the Strsearch program 

which uses many pairs of LOAD and ADD instructions each 

of that can be combined into a single LOAD instruction with 

post-increment register offset addressing mode. 

 
Fig. 3. Speed-up of ABEX compared to Thumb-2. 

 

Fig. 4 shows the frequency of the ABEX instructions. Let 

reg+imm, -reg, and post+ denote register-plus-immediate 

addressing mode, negative register offset addressing mode, 

and post-increment register offset addressing mode, 

respectively, and let extData be new sign/zero extension 

combined with data processing instructions. On average, 

reg+imm, -reg, post+, and extData account for 2.5%, 0.8%, 

2.5%, and 1.1% of the total execution cycles, respectively. 

 

 
Fig. 4. Frequency of the proposed instructions. 

 

Fig. 5 shows the compression efficiency of ABEX 

compared to Thumb-2. The code size is reduced by an 

average of 2.9%. This is because ABEX eliminates the ADD, 

SUB, LSL, and separate sign/zero extension instructions that 

are required in Thumb-2 code to update the address due to the 

missing addressing modes and post extension mode. 

 

 
Fig. 5. Compression efficiency of ABEX. 
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Fig. 6 shows the execution frequency of the register field 

reduced that use the disabled registers in instructions in the 

proposed approach. Register R7 is disabled in the LDM and 

STM instructions, and four registers, R4, R5, R6, and R7, are 

excluded in the ADR instruction. On average, the ADR, 

LDMIA, and STMIA instructions that use disabled registers 

only account for 0.000115%, 0.000118%, and 0.000118% of 

the total dynamic cycles, respectively, and this shows the 

proposed restriction is minor in the performance for 

benchmark programs. 

 

 
Fig. 6. Frequency of the ADR, LDMIA, and STMIA instructions that use 

disabled registers. 

 

V. CONCLUSION 

In this paper, the addressing mode and sign/zero bit 

extensions are proposed for Thumb-2 instruction set 

architecture, which improves both compression efficiency 

and performance of the architecture. This improvement 

requires additional small amount of hardware circuitry while 

the number of accessible registers is reduced in the several 

less frequently used instructions. 

The NEON technology, the ARM advanced SIMD 

extensions, is beneficial for digital signal processing and 

multimedia algorithms. It remains as a future work to 

evaluate and improve the NEON instruction set architecture. 
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