
 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 5, No. 2, March 2021

DOI: http://dx.doi.org/10.24018/ejece.2021.5.2.308 Vol 5 | Issue 2 | March 2021 13

Abstract — Thumb-2 is the most recent instruction set

architecture for ARM processors which are one of the most

widely used embedded processors. In this paper, two extensions

are proposed to improve the performance of the Thumb-2

instruction set architecture, which are addressing mode

extensions and sign/zero extensions combined with data

processing instructions. To speed up access to an element of an

aggregated data, the proposed approach first introduces three

new addressing modes for load and store instructions. They are

register-plus-immediate offset addressing mode, negative

register offset addressing mode, and post-increment register

offset addressing mode. Register-plus-immediate offset

addressing mode permits two offsets and negative register offset

allows offset to be a negative value of a register content. Post-

increment register offset mode automatically modifies the offset

address after the memory operation. The second is the sign/zero

extension combined with a data processing instruction which

allows the result of a data processing operation to be sign/zero

extended to accelerate a type conversion. Several least

frequently used instructions are reduced to provide the encoding

space for the new extensions. Experiments show that the

proposed approach improves performance by an average of

8.6% when compared to the Thumb-2 instruction set

architecture.

Index Terms — Instruction Set Architecture; Thumb-2;

ARM; Addressing Mode; Sign/zero Extension; Embedded

Processor.

I. INTRODUCTION

ARM processor is one of the most widely used embedded

processors, which is adopted in smartphones, tablets, laptops,

consumer electronics, and various electronic devices. It is

estimated that about 180 billion ARM-based chips have been

shipped until 2020, including the 6.7 billion chips in the

fourth quarter of 2020 [1].

In the embedded systems, small code size is often required

because the memory size directly impacts on the cost of the

system. To solve this problem, dual instruction set processors

such as ARM/Thumb [2] and MIPS/MIPS16 [3] are

presented which provides two separate instruction sets which

are a normal instruction set and a compressed instruction set.

The compressed instructions are a subset of the frequently

used normal instructions, and they are decompressed into

normal instructions during the instruction decoding stage [2].

Contrary to the separate instruction sets, Thumb-2

architecture [4] is proposed for ARM Cortex processors to

meet both high performance and small code size in which a

Submitted on February 28, 2021.

Published on March 22, 2021.

Dae-Hwan Kim, Department of Computer and Electronics Engineering,
Suwon Science College, Rep. of Korea.

(e-mail: kimdh ssc.ac.kr).

single instruction set architecture provides both the 16-bit

Thumb instructions and additional 32-bit instructions which

can be freely intermixed with each other.

Researches have been made to improve the ARM/Thumb

instruction set architecture [5]-[27]. However, little attentions

have been paid to the extension of specific modes such as

addressing mode and sign/zero extension for the ARM

instruction architectures. To improve performance and

compression efficiency of the Thumb-2 instruction set

architecture (ISA), this paper suggests a new instruction set

architecture, named ABEX (Addressing mode extension and

sign/zero Bit EXtension combined with data processing),

which introduces efficient addressing modes for load and

store instructions, and the sign/zero extension combined with

data processing to accelerate a type conversion.

The rest of this paper is organized as follows. Section II

provides the review of the related works. Section III presents

the proposed instruction set design, and Section IV provides

experimental results. Conclusions are presented in Section V.

II. RELATED WORK

Numerous approaches have been proposed to enhance the

32-bit ARM ISA. The ARM DSP extension [5] introduced in

ARMv5 adds new DSP instructions to the ARM instruction

set to accelerate signal processing applications. It supports the

16-bit multiplication instruction and the saturated add and

subtract instructions, which provides up to 70% performance

improvement in audio applications. This extension is

incorporated in various processors such as ARM926EJ-S,

ARM946E-S, and ARM966E-S.

The SIMD (Single Instruction Multiple Data) instructions

in ARMv6 simultaneous operate on two 16-bit or four 8-bit

values packed in a 32-bit register. More than 60 instructions

are added which mainly targets multimedia applications, and

the SIMD extension achieves 75% performance improvement

for audio and video processing applications. This architecture

is implemented in the ARM1136J(F), ARM1156T2(F),

ARM1176JZ(F), and ARM11 MPCore processors.

The ARMv7 architecture employs the advanced SIMD

extension called NEON [6] for the ARM Cortex-A

processors, which provides flexible and powerful

accelerations for multimedia and signal processing

applications such as video codec, speech and audio codec,

graphics, and image processing. The NEON instructions can

operate on vectors stored in the 64-bit double word and 128-

@

Addressing Mode and Bit Extensions to the Thumb-2

Instruction Set Architecture

Dae-Hwan Kim

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 5, No. 2, March 2021

DOI: http://dx.doi.org/10.24018/ejece.2021.5.2.308 Vol 5 | Issue 2 | March 2021 14

bit quad word vector registers.

The ARMv8 architecture [7]-[8] introduces a 64-bit

architecture, named AArch64, and a new A64 instruction set

to the existing instruction set to support the 64-bit operation

and the virtual addressing. ARMv8 supports two execution

states, AArch64 for 64-bit operation and AAarch32 for 32-bit

operation. A64 has 31 64-bit general-purpose registers. This

architecture includes instruction-level cryptographic

instructions while dropping LDM/STM and most conditional

execution instructions.

Programs often manipulate data at subword level in the

embedded system. Li and Gupta [10] propose a bit section

extension to manipulate subword data which occur in

network and multimedia applications. The new instructions

can reduce explicit instructions for packing and unpacking

narrow width data into memory words.

Increasing the number of physical registers would improve

performance, but this requires additional bits to encode the

register number. To maintain the width of 32-bit ARM

instructions, references [11]-[12] observe that the conditional

field is underutilized, and thus, trade the conditional field for

the register field in the instruction, and use the 4-bit

conditional field to encode the extra registers, which allows

the number of physical registers to be doubled from 16 to 32

without increasing code size.

Bos et al. [13] propose the parallel computation model of

the Montgomery multiplication to improve performance in

the public-key cryptography applications. They evaluate the

proposed approach on the ARM platform with NEON

technology and show that it is necessary to incorporate new

256-bit SIMD instructions with two-way integer multipliers

in the instruction set.

Erich et al. [14] evaluate ARM Cortex-M0+, ATmega, and

MSP430 microprocessors in runtime, chip area, power, and

energy characteristics for elliptic curve cryptography. The

results show that the Cortex-M0+ is the fastest and most

energy efficient processor. They present the resource-saving

scalar multiplication algorithm, and integrate instruction set

extensions for these processors.

Murray et al. [15] improve the efficiency of the instruction

set extension generation. The proposed approach integrates

the exploration of source-level code transformations and the

identification of instruction set extensions. The proposed

framework is based on the Intel XScale processor which is

the Intel’s implementation of the ARMv5 architecture. The

approach improves performance by 49% on two benchmark

suites.

Other techniques focus on enhancing the 16-bit Thumb

instruction set architecture. In 16-bit Thumb, most

instructions can reference only 8 registers out of 16 physical

registers. Krishnaswamy and Gupta [17] address this

inefficiency and introduce a new register mask set instruction

to specify the visible set of registers. With the use of the mask

instruction, every instruction can access all the registers.

However, many mask instructions are emitted to change the

visible subset of registers, resulting in the increase of code

size.

Krishnaswamy and Gupta introduce augmenting

extensions [18] to coalesce consecutive instructions and

convert those instructions to a single 32-bit ARM instruction

during the decode stage. Because some pairs of Thumb

instructions are equivalent to a single ARM instruction, the

compiler replaces patterns of Thumb instructions by the

equivalent sequences of augmented Thumb instructions.

Each augmented instruction is coalesced with the following

non-augmented Thumb instruction in the decode stage which

is redesigned to detect augmenting instructions and perform

coalescing to generate the ARM instructions.

Lee et al. [19]-[20] construct the original register file into

the banked one and provide a new bank change instruction

for register allocation, and additional register allocation

technique for this banked structure.

Kim [21]-[22] proposes the addressing mode extension to

the 16-bit Thumb architecture [21], and two addressing

modes to the Thumb-2 architecture [22]. On the EPIC

processors, Fiskiran et al. [23] present the addressing modes

for the AES algorithms. However, it demands a considerable

amount of hardware circuitry.

To reduce code size without performance degradation,

Canedo et al. [24] propose the queue-based reduced

instruction set and the code generation algorithm optimized

for the proposed instruction set. The proposed approach can

generate 26% more compact code when compared to

ARM/Thumb without reducing the parallelism in the

program.

III. INSTRUCTION SET DESIGN

In the offset addressing mode in the Thumb-2 architecture,

an effective address is calculated as the sum of an offset value

and the address in a base register. Offset can be specified in

one of three types which are immediate value, the content of

a register, a scaled value in a register, but the combination of

offsets is not allowed. This degrades performance when

accessing an elements of array structures. Another restriction

is that negative register offset addressing mode is not

supported which subtracts an offset value in a register from

the address in a base register when forming the effective

address.

In addition to offset addressing mode, Thumb-2 also

provides post-indexed addressing mode where a base address

is used as an effective address, which can be updated to the

next memory location. However, this addressing mode is not

efficient for consecutive memory addressing in which an

offset value is required to be modified after each memory

operation.

These limitations often lead to an extra ADD or SUB

instruction to compute or update the effective address when

accessing elements in an aggregated data such as an array. To

reduce these limitations, ABEX introduces three new

addressing modes, which are named in this paper register-

plus-immediate offset addressing mode, post-increment

register offset addressing mode, and negative register offset

addressing mode. Register-plus-immediate offset addressing

mode permits both a register offset and an immediate offset

where the effective address is the sum of a base address and

two offsets. Post-increment register offset addressing mode

combines register offset addressing mode and post-indexed

addressing mode in Thumb-2, which calculates the effective

address as the sum of the base address and the offset address,

and automatically modifies the offset address after the

memory operation. Negative register offset addressing mode

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 5, No. 2, March 2021

DOI: http://dx.doi.org/10.24018/ejece.2021.5.2.308 Vol 5 | Issue 2 | March 2021 15

subtracts an offset value in a register from the base address

when forming an effective address.

In addition to these new addressing modes, ABEX

provides the ability to sign/zero extension for the result of the

data processing operation. The Thumb-2 architecture already

provides distinct sign/zero-extend instructions such as SXTB

(Signed eXTend Byte) and extend-and-add instructions such

as UXTAB (Unsigned eXTend and Add Byte) and SXTAH

(Signed eXTend and Add Halfword). ABEX introduces

sign/zero extension to the results of ADD, SUB, AND, ORR,

ORN, EOR, BIC, ADC, SBC, and RSB operations.

Almost all the opcodes are already used in Thumb-2.

Therefore, it is required to reduce several instructions to give

space for the new extensions. Three unfrequently used

instructions are selected which has a sufficient number of

operand bits. They are the ADD immediate to PC (Program

Counter), LDMIA (Load multiple) and STMIA (Store

multiple) instructions. The ADD immediate to PC (Program

Counter) instruction, normally denoted by ADR (ADdress to

Register), adds an immediate value to the PC value, and

writes the result to the destination register. The LDMIA and

STMIA instructions transfer data between memory and a

subset of the general-purpose registers. In each instruction,

the destination register field, or the register list field is

reduced by one bit, resulting in one free bit. This bit is used

to distinguish between a reduced Thumb-2 instruction and a

new ABEX instruction.

The performance degradation by this modification is minor

by the reductions because the reduced instructions are not

frequently used. On average, the restricted ADR, LDMIA,

and STMIA instructions that use disabled registers only

account for 0.000115%, 0.000118%, and 0.000118% of the

total dynamic cycles, respectively. Details are discussed in

Section 4.

Fig. 1 shows the modifications to the 16-bit ADR

instruction format in Thumb-2 to support two addressing

modes and sign/zero extended data processing instructions.

In the ADR instruction format, the size of a destination

register field is reduced from three to two, whereby saving bit

10. This bit is zero for the original ADR instruction and one

for the ABEX instructions. Thumb-2 enforces 16-bit

alignment on all instructions. Thus, the 32-bit Thumb-2

instruction is treated as two halfwords, hw1 (first halfword)

and hw2 (second halfword) where hw1 is at the lower address

whereas the 16-bit instructions have only first halfword. The

bit 9 of hw1 specifies the new instruction type, which is zero

for the new addressing modes and one for the extended data

processing operations. The bit 11 of hw2 distinguishes

between two addressing modes negative register offset

addressing mode and post-increment offset addressing mode.

In post-increment offset addressing mode, bits 10 to 8, and

bits 7 to 4 of hw2 specify the left shift amount, and the post-

increment immediate value, respectively. For the extended

data processing instructions, bits 7 to 4 of hw1 and bits 15 to

14 of hw2 encode the data operation named DOP, and the

extension operation named EOP, respectively. Bits 13 to 12

of hw2 identify the second operand type which can be

register, scaled register, or immediate. For the scaled register

type, bits 5 to 4 of hw2 encode the shift type which is one of

LSL (Logical Shift Left), LSR (Logical Shift Right), ASR

(Arithmetic Shift Right), and ROR (Rotate Right). Two bits

in bits 7 to 6 encode the shift amount.

hw1

15 11 10 8 7 0

 1 0 1 0 0 Rd imm8

ADD Rd, PC, #<imm8>, Rd: in the range of R0-R7

(a)

hw1

15 11 10 9 8 7 0

 1 0 1 0 0 0 Rd imm8

ADD Rd, PC, #< imm8>, Rd: in the range of R0-R3

hw1 hw2

15 10 9 8 7 6 5 4 3 0 15 12 11 10 8 7 4 3 0

 1 0 1 0 0 1 0 S U size L Rn Rt 0 0 0 0 0 0 0 0 Rm

<LDR|STR><size> Rt, [Rn, -Rm]

Negative register offset addressing mode

1 0 1 0 0 1 0 S U size L Rn Rt 1 shift imm4 Rm

<LDR|STR><size> Rt,[Rn,Rm {,LSL #<shift>}],#<imm4>

Post-increment register offset addressing mode

hw1 hw2

15 10 9 8 7 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 1 0 0 1 1 0 DOP Rn EOP 0 1 Rd 0 0 0 0 Rm

<DOP><EOP> Rd, Rn, Rm

1 0 1 0 0 1 1 0 DOP Rn EOP 1 0 Rd imm2 type Rm

<DOP><EOP> Rt, Rn, Rm {, LSL|LSR|ASR|ROR #<imm2>}

1 0 1 0 0 1 1 0 DOP Rn EOP 1 1 Rd imm8

<DOP><EOP> Rt, Rn, #<imm8>

DOP: AND|BIC|ORR|ORN|EOR|ADD|ADC|SBC|SUB|RSB

EOP: SH (Signed extend Halfword) | SB (Signed extend Byte) |
UH (Unsigned extend Halfword) | UB (Unsigned extend
Byte)

(b)

Fig. 1. Thumb-2 ADR instruction format and its corresponding ABEX
instruction format: (a) Thumb-2 format, (b) ABEX format.

Fig. 2 shows the modifications to the 16-bit LDMIA and

STMIA instructions where the transfer list is reduced from

R0-R7 to R0-R6 by excluding register R7. The excluded bit

is used for register-plus-immediate offset addressing mode

for the load and store instructions. The bit 7 of hw1 is zero

for the 16-bit LDMIA/STMIA instruction and one for the new

ABEX instructions, which are 32-bit wide. ABEX allocates 8

bits to the immediate field similar to the Thumb-2 immediate

instructions, which is encoded in bits 11 to 4 of hw2. The A

bit distinguishes between ADD (A=1) immediate and SUB

(A=0) immediate. Bits 11 to 10 of hw1 determine the scale

factor for the index register, Rm. Among various shift types

and amounts, 1-bit, 2-bit, and 3-bit left shifts are supported

where 1-bit and 2-bit left shifts are useful for accessing 16-bit

and 32-bit arrays, respectively. Three registers are encoded in

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 5, No. 2, March 2021

DOI: http://dx.doi.org/10.24018/ejece.2021.5.2.308 Vol 5 | Issue 2 | March 2021 16

the same places in the Thumb-2 ISA.

hw1

15 11 10 8 7 0
 1 1 0 0 L Rn 8-bit register list

LDMIA/STMIA Rn!, <8-bit register list>

(a)

hw1

15 11 10 8 7 6 0
 1 1 0 0 L Rn 0 7-bit register list

LDMIA/STMIA Rn!, <7-bit register list>

hw1 hw2
15 12 11 10 9 8 7 6 5 4 3 0 15 12 11 4 3 0

 1 1 0 0 shift A S 1 size L Rn Rt imm8 Rm

<LDR|STR><size> Rt, [Rn, Rm {, LSL #<shift>}, #+/-<imm8 >]

Register-plus-immediate offset addressing mode

(b)

Fig. 2. Thumb-2 LDM/STM instruction format and its corresponding
ABEX instruction format: (a) Thumb-2 format, (b) ABEX format.

PSR (Program Status Register) can be used to distinguish

between ABEX mode and Thumb-2 mode if needed. Four

bits, bits 23 to 20, are unused in the register, and one of them

such as bit 23 can be used to indicate the ABEX extension,

which is one for ABEX mode and zero for Thumb-2 mode.

Consider the hardware circuitry to support ABEX. One 32-

bit adder is required for register-plus-immediate offset

addressing mode and post-increment register offset

addressing mode. The new post-extended data processing

requires a sign/zero extension logic to be connected to result

operand of a data processing operation, MUX, and control

logics.

IV. EVALUATION

Fig. 3 shows the performance of the proposed approach,

ABEX, compared to the Thumb-2 ISA. Experiments are

performed on the FacSim simulator [28] targeting the ARM

Thumb-2 Cortex-M3 processor [29]. The benchmarks are

gzip, susan, pegwit, adpcm, blowfish, and stringsearch

programs. Gzip is a GNU zip program. Susan is the noise

reduction image filter program. Pegwit performs the public-

key encryption and authentication. Adpcm is a simple audio

codec. Blowfish is a symmetric block cipher, and

stringsearch, denoted by strsearch in this paper, searches for

given words in phrases. Gzip is from SPEC2000 [30], Susan,

adpcm, blowfish, and strsearch are from Mibench [31]. For

each program, Thumb-2 assembly code generated by the

compiler is post-processed and compacted into ABEX code.

The speedup is calculated by the ratio of the number of total

cycles of Thumb-2 code and that of ABEX code. In the six

benchmark programs, performance is improved by an

average of 8.6% compared to the Thumb-2 ISA. The most

significant improvement is achieved in the Strsearch program

which uses many pairs of LOAD and ADD instructions each

of that can be combined into a single LOAD instruction with

post-increment register offset addressing mode.

Fig. 3. Speed-up of ABEX compared to Thumb-2.

Fig. 4 shows the frequency of the ABEX instructions. Let

reg+imm, -reg, and post+ denote register-plus-immediate

addressing mode, negative register offset addressing mode,

and post-increment register offset addressing mode,

respectively, and let extData be new sign/zero extension

combined with data processing instructions. On average,

reg+imm, -reg, post+, and extData account for 2.5%, 0.8%,

2.5%, and 1.1% of the total execution cycles, respectively.

Fig. 4. Frequency of the proposed instructions.

Fig. 5 shows the compression efficiency of ABEX

compared to Thumb-2. The code size is reduced by an

average of 2.9%. This is because ABEX eliminates the ADD,

SUB, LSL, and separate sign/zero extension instructions that

are required in Thumb-2 code to update the address due to the

missing addressing modes and post extension mode.

Fig. 5. Compression efficiency of ABEX.

1,00

1,05

1,10

1,15

1,20

S
p
e
e
d
-u

p
 o

v
e
r

T
h
u
m

b
-2

0

1

2

3

F
re

q
u

e
n

c
y
 (

%
)

0,92

0,94

0,96

0,98

1,00

R
a
ti
o

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 5, No. 2, March 2021

DOI: http://dx.doi.org/10.24018/ejece.2021.5.2.308 Vol 5 | Issue 2 | March 2021 17

Fig. 6 shows the execution frequency of the register field

reduced that use the disabled registers in instructions in the

proposed approach. Register R7 is disabled in the LDM and

STM instructions, and four registers, R4, R5, R6, and R7, are

excluded in the ADR instruction. On average, the ADR,

LDMIA, and STMIA instructions that use disabled registers

only account for 0.000115%, 0.000118%, and 0.000118% of

the total dynamic cycles, respectively, and this shows the

proposed restriction is minor in the performance for

benchmark programs.

Fig. 6. Frequency of the ADR, LDMIA, and STMIA instructions that use

disabled registers.

V. CONCLUSION

In this paper, the addressing mode and sign/zero bit

extensions are proposed for Thumb-2 instruction set

architecture, which improves both compression efficiency

and performance of the architecture. This improvement

requires additional small amount of hardware circuitry while

the number of accessible registers is reduced in the several

less frequently used instructions.

The NEON technology, the ARM advanced SIMD

extensions, is beneficial for digital signal processing and

multimedia algorithms. It remains as a future work to

evaluate and improve the NEON instruction set architecture.

REFERENCES

[1] https://www.businessweekly.co.uk/news/hi-tech/record-67bn-arm-

chips-shipped-single-quarter-just-start, 2021.

[2] S. Segars, K. Clarke, and L. Goudge, "Embedded control problems,
Thumb, and the ARM7TDMI," IEEE Micro, Vol. 15, No. 5, pp.22-30,

1995.

[3] K. Kissell, “MIPS16: High-Density MIPS for the Embedded Market,”
Technical report, Silicon Graphics MIPS Group, 1997.

[4] R. Phelan, “Improving ARM Code Density and Performance,”

Technical Report, ARM Ltd., 2003.
[5] F. Hedley, ARM DSP-Enhanced Extensions, ARM Ltd., 2001.

[6] ARM Ltd., Introducing NEON™ Development Article, ARM Ltd.,

2009.
[7] ARM Ltd., ARMv8 Instruction Set Overview, ARM Ltd., 2012.

[8] ARM Ltd., ARM Architecture Reference Manual ARMv8, for ARMv8-

A architecture profile, ARM Ltd., 2013.
[9] ARM Ltd., Introduction to Armv8.1-M architecture. 2019.

[10] B. Li, and R. Gupta, "Bit Section Instruction Set Extension of ARM for

Embedded Applications," In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES), Grenoble, France, pp.69-78, 2002.

[11] H. -J., Cheng, Y. -S. Hwang, R. -G. Chang, and C. -W. Chen, "Trading
Conditional Execution for More Registers on ARM Processors," In

Proceedings of the 8th IEEE/IFIP International Conference on

Embedded and Ubiquitous Computing (EUC), Hong Kong, China,

pp.53-59, 2010.

[12] H. -H. Chiang, H. -J. Cheng, and Y. -S. Hwang, "Doubling the Number
of Registers on ARM Processors," In Proceedings of the 16th

Workshop on Interaction between Compilers and Computer

Architectures (INTERACT-16), Louisiana, USA, pp.1-8, 2012.
[13] J. W. Bos, P. L. Montgomery, D. Shumow, G. M. Zaverucha,

"Montgomery Multiplication Using Vector Instructions," IACR

Cryptology ePrint Archive, pp. 519-535, 2013.
[14] W. Erich, U. Thomas, W. Mario, "8/16/32 Shades of Elliptic Curve

Cryptography on Embedded Processors", In Proceedings of the 14th

International Conference on Cryptology in India, Mumbai, India,
pp.244-261, 2013.

[15] A. C. Murray, R. V. Bennett, B. Franke, N. Topham, "Code

transformation and instruction set extension". ACM Transactions on
Embedded Computing Systems, Vol. 8, No. 4, pp. 1-31, 2009.

[16] J. Goodacre, A. N. Sloss, "Parallelism and the ARM instruction set

architecture," IEEE Computer, Vol. 38, No. 7, pp.42-50, 2005.
[17] A. Krishnaswamy, R. Gupta, "Efficient Use of Invisible Registers in

Thumb Code", In Proceedings of the 38th IEEE/ACM International

Symposium on Microarchitecture, Barcelona, Spain, pp.30-42, 2005.
[18] A. Krishnaswamy, R. Gupta, "Dynamic coalescing for 16-bit

instructions," ACM Transaction on Embedded Computing System, Vol.

4, No. 1, pp. 3-37, 2005.
[19] J. H. Lee, J. Park, S. M. Moon, "Securing More Registers with Reduced

Instruction Encoding Architectures", In Proceedings of the 13th IEEE

International Conference on Embedded and Real-Time Computing
Systems and Applications, Vol. 2, Washington, pp.417-425, 2007

[20] J. H. Lee, S. M. Moon, H. K. Choi, "Comparison of Bank Change

Mechanisms for Banked Reduced Encoding Architectures", In
Proceedings of the International Conference on Computational

Science and Engineering Vol. 2, Canada, pp.334-341, 2009.

[21] D.-H. Kim, "Addressing Mode Extension to the ARM/Thumb
Architecture", Advances in Electrical and Computer Engineering,

Vol.14, No. 2, pp.85-88, 2014.
[22] D.-H. Kim, S.-W. Kim, "Extending Offset Addressing Mode and Post-

Indexed Addressing Mode of Thumb-2 Instruction Set Architecture",

The Journal of Korean Institute of Next Generation Computing, Vol.9,

No.6, pp.6-14, 2013.

[23] A. M. Fiskiran, R. B. Lee, "Performance Impact of Addressing Modes

on Encryption Algorithms", In Proceedings of the International
Conference on Computer Design, Austin, Texas, pp.542-54, 2001.

[24] A. Canedo, B. A. Abderazek, S. Masahiro, "Compiling for Reduced

Bit-Width Queue Processors," Journal of Signal Processing Systems,
Vol. 59, No. 1, pp. 45-55, 2010.

[25] S. Flur, K. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W.

Deacon, and P. Sewell, “Modelling the ARMv8 architecture,
operationally: concurrency and ISA,” ACM SIGPLAN Notices, pp. 608-

621 2016.

[26] A. Akram, “A Study on the Impact of Instruction Set Architectures on
Processor’s Performance,” M.S. Thesis, Western Michigan University,

2017.

[27] B. Simner, S. Flur, C. Pulte, A. Armstrong, J. Pichon-Pharabod, et al.,
“ARMv8-A system semantics: instruction fetch in relaxed

architectures,” In Proceedings of 29th European Symposium on

Programming (ESOP), Mar 2020.

[28] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han,

"FaCSim: A Fast and Cycle-Accurate Architecture Simulator for

Embedded Systems," In Proceedings of the International Conference
on Languages, Compilers, and Tools for Embedded Systems, Tucson,

Arizona, USA, pp. 89-100, 2007.

[29] ARM Ltd., Cortex-M3 technical reference manual, ARM Ltd., 2010.
[30] J. L. Henning, "SPEC CPU 2000: Measuring CPU performance in the

new millennium," IEEE Computer, Vol. 33, No. 7, pp. 28-35, 2000.

[31] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, "Mibench: A free, commercially representative embedded

benchmark suite", In Proceedings of the 4th IEEE International

Workshop on the Workload Characterization, Austin, TX, USA, pp.3-
14, 2001.

0

0,0001

0,0002

F
re

q
u

e
n

c
y
 (

%
)

