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 Abstract — In this paper an analysis of discrete-time 

convolution is performed to prove that the convolution sum is 

polynomial multiplication without carry, whether the sequences 

are finite or not, by using several examples to compare the 

results computed using the existing approaches to the 

polynomial multiplication approach presented here. In the 

design and analysis of signals and systems the concept of 

convolution is very important. While software tools are 

available for calculating convolution, for proper understanding 

it is important to learn now to calculate it by hand. To this end, 

several popular methods are available. The idea that the 

convolution sum is indeed polynomial multiplication without 

carry is demonstrated in this paper. The concept is further 

extended to deconvolution, N-point circular convolution and the 

Z-transform approach.  

 

Keywords — Convolution, deconvolution, N-point circular 

convolution, Z-transform.  

 

I. INTRODUCTION 

In the design and analysis of signals-whether discrete-time 

(DT) or continuous-time (CT), the concept of convolution is 

an indispensable and basic foundation. For CT signals the 

convolution is usually computed using integrals, while for 

DT signals, summation is used. The DT convolution usually 

referred to as the convolution sum, for which, there are two 

types- N-point circular convolution (periodic for a period of 

N) and linear convolution (basic and from −∞ to +∞). To 

understand linear convolution, one usually starts by 

choosing two finite length sequences of 1-dimension and 

computing the convolution sum by hand. Linear convolution 

has been described in the major authoritative scholarly 

textbooks on signals and systems analysis. See for example 

[1]-[6]. 

he main solution methods presented in the books are:  

- graphical convolution: where the graphs of both 

signals are drawn by hand and manipulated; 

- analytical convolution: where the solution is 

obtained by solving an algebraic equation and 

usually arriving at a closed form solution; 

- the Z-transform approach: where the Z-transforms 

of both signals are manipulated to obtain a solution. 

The analytical solution is more generic because it 

can obtain a closed-form solution when the lengths 

of both sequences are unknown. The idea of 

convolution sum as the multiplication of both 

signals without carry is not in any of the books. 

However, it is acknowledged that it is indispensable to 

understand analytical convolution because is the only method 
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that can obtain a closed form solution. Furthermore, this 

paper does not attempt to prove that the multiplication 

approach presented here is the superior method. Rather it is 

an alternative method to arrive at the same solution.  

[7] was the first paper that showed the analogy of 

convolution with polynomial multiplication, albeit limited to 

sequences of finite length. However, this paper attempts to 

prove and to generalize that it does not matter whether 

sequences are finite, or infinite or which method is used to 

calculate, the convolution sum obtained will correspond to 

the polynomial multiplication of both signals without carry. 

Therefore, it is valid to calculate and to understand the 

solution as the polynomial multiplication without carry 

presented here. 

In addition, most popular scholarly textbooks in signals 

explain equivalence of multiplication in the Z-domain with 

convolution in the time. Based on this, the Z-transform 

approach to convolution is done by first obtaining the Z-

transforms of both signals, then performing the multiplication 

of both signals. The convolution sum is taken as the 

coefficients of the product. [8] shows that for finite length 

signals, vector multiplication of both signals in the time 

domain can be directly performed without taking the Z-

transforms and it will produce the same result as the Z-

transform approach. It will also be shown here that 

polynomial multiplication can be directly applied to both 

signals in the time domain without taking the Z-transforms 

and it will produce the same result as the Z-transform 

approach. 

The remaining parts of the paper is as follows. Section II 

contains a description of the convolution sum with some 

examples to demonstrate that the sum obtained by the 

graphical, analytical and Z-transform approaches are the 

same as those obtained by direct polynomial multiplication. 

In Section III it is shown that deconvolution can be performed 

by long division (as the opposite of multiplication) if one of 

the original signals is known. Section IV shows the extension 

of the polynomial multiplication approach to the periodic N-

point circular convolution.  The paper is concluded in Section 

V.  

 

II. CONVOLUTION SUM IS MULTIPLICATION WITHOUT 

CARRY 

In this section, several examples are presented some from 

the reviewed books to show that the convolution sum is 

polynomial multiplication without carry. The established 

methods which are, graphical, Z-transform, and analytical 
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solutions will be presented (where necessary, references will 

be made to solutions in the books with pages indicated). 

Thereafter the solutions will be compared with that of the 

polynomial multiplication approach presented here. 

A. Non-Finite Sequence Example 

Consider Example 2.3.4 from [4] (p. 82), which is as 

follows. Determine the convolution sum ℎ[𝑛] = ℎ1[𝑛] ∗
ℎ2[𝑛] for the signals: 

 

ℎ1[𝑛] = (
1

2
)

𝑛

𝑢[𝑛] and ℎ2[𝑛] = (
1

4
)

𝑛

𝑢[𝑛].  

 

The linear convolution sum is stated as the infinite 

summation: 

 

ℎ[𝑛] = ℎ1[𝑛] ∗ ℎ2[𝑛] = ∑ ℎ1[𝑚]

∞

𝑚=−∞

ℎ2[𝑛 − 𝑚] 

 

The analytical closed form solution for the above example 

is: 

 

ℎ[𝑛] = [2 (
1

2
)

𝑛

− (
1

4
)

𝑛

] 𝑢[𝑛] 

 

Obtaining ℎ[𝑛] samples for 𝑘 = 0, ⋯ ,10 (ℎ[𝑛] ≈ 0 for 𝑛 >
10) yields the sequence: 

 

ℎ[𝑛] = [1, 0.75, 0.44, 0.234, 0.121, 0.062, 0.031, 0.016, 

0.0078, 0.0039, 0.002].  

 

The graph of the solution is shown in Fig. 1. 

For the polynomial multiplication solution, finite numeric 

samples of ℎ1[𝑛] (for 𝑛 = 0, ⋯ ,10 ) and ℎ2[𝑛] (for 𝑛 =
0, ⋯ ,4) are taken and multiplied without carry. The result is 

shown in Table I, which clearly shows that the result is the 

same as the graphical and analytical closed form solutions. 

This is the first paper where direct polynomial multiplication 

of samples of the original sequences is used to validate a 

closed form solution. 

 
TABLE I: 𝒉[𝒏] BY VECTOR MULTIPLICATION. MINUTE DIFFERENCES IN 

LATTER VALUES ARE A RESULT OF APPROXIMATIONS 

n 0 1 2 3 4 5 6 7 

h1[n] 1̂ 0.5 0.25 0.125 0.0625 0.0313 0.016 0.0078 

h2[n] 1̂ 0.25 0.0625 0.0156 0.0039    

 1̂ 0.5 0.25 0.125 0.0625 0.0313 0.016 0.0078 

  0.25 0.125 0.0625 0.0313 0.0156 0.008 0.0039 

   0.0625 0.03125 0.0156 0.0078 0.004 0.002 

    0.0156 0.0078 0.0039 0.002 0.001 
     0.0039 0.002 1E-03 0.0005 

h[n] 𝟏̂ 0.75 0.4375 0.23435 0.1211 0.0606 0.03 0.0151 

         

n 8 9 10 11 12 13 14  

h1[n] 0.0039 0.002 0.001      
h2[n]         

 0.0039 0.002 0.001      

 0.002 0.001 0.0005 0.00025     
 0.001 0.0005 0.000244 0.000125 6.25E-05    

 0.0005 0.0002 0.000122 6.08E-05 3.12E-05 
1.56E-

05 
  

 0.0002 0.0001 6.08E-05 3.04E-05 1.52E-05 
7.80E-

06 

3.9E-

06 
 

h[n] 0.0076 0.0038 0.001927 0.000466 0.000109 
2.34E-

05 

3.9E-

06 
 

 

Fig. 1. The convolution sum 𝒉[𝒏] = 𝒉𝟏[𝒏] ∗ 𝒉𝟐[𝒏]. 

 

B. Finite Sequence Example 

Next, consider the finite sequences  
𝑥[𝑛] = {3,2,0, 2̂, 2} and ℎ[𝑛] = {2, −1̂, 1,0,0,2,1}. The   ̂

indicates the 𝑛 = 0 sample. From the above data −4 ≤ 𝑚 ≤
6 and the analytical solution is given as: 

 

𝑦[𝑛] = ∑ 𝑥[𝑚]ℎ[𝑛 − 𝑚]

6

𝑚=−4

 

 

𝑦[−4] = 𝑥[−3]ℎ[−1] = 6 

 

 

𝑦[−3] = 𝑥[−3]ℎ[0] + 𝑥[−2]ℎ[−1] = −3 + 4 = 1 

𝑦[−2] = 𝑥[−3]ℎ[1] + 𝑥[−2]ℎ[0] + 𝑥[−1]ℎ[−1]

= 3 − 2 + 0 = 1 

 

𝑦[−1] = 𝑥[−3]ℎ[2] + 𝑥[−2]ℎ[1] + 𝑥[−1]ℎ[0]

+ 𝑥[0]ℎ[−1] = 6 

 

𝑦[0] = 𝑥[−3]ℎ[3] + 𝑥[−2]ℎ[2] + 𝑥[−1]ℎ[1] + 𝑥[0]ℎ[0]

+ 𝑥[1]ℎ[−1] = 0 + 0 + 0 − 2 + 4 = 2 

 

𝑦[1] = 𝑥[−3]ℎ[4] + 𝑥[−2]ℎ[3] + 𝑥[−1]ℎ[2] + 𝑥[0]ℎ[1]

+ 𝑥[1]ℎ[0] = 6 + 0 + 0 + 2 − 2 = 6 

 

𝑦[2] = 𝑥[−3]ℎ[5] + 𝑥[−2]ℎ[4] + 𝑥[−1]ℎ[3] + 𝑥[0]ℎ[2]

+ 𝑥[1]ℎ[1] = 3 + 4 + 0 + 0 + 2 = 9 

 

𝑦[3] = 𝑥[−2]ℎ[5] + 𝑥[−1]ℎ[4] + 𝑥[0]ℎ[3] + 𝑥[1]ℎ[2]

= 2 + 0 + 0 + 0 + 0 = 2 

 

𝑦[4] = 𝑥[−1]ℎ[5] + 𝑥[0]ℎ[4] + 𝑥[1]ℎ[3] = 4 

 

𝑦[5] = 𝑥[0]ℎ[5] + 𝑥[1]ℎ[4] = 2 + 4 = 6 

 

𝑦[6] = 𝑥[1]ℎ[5] = 2 

 

𝑦[𝑛] = {6,1,1,6, 2̂, 6,9,2,4,6,2} 

 

The solution obtained by direct multiplication is as follows: 
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𝑛 −4 −3 −2 −1 0 1 2 3 4 5 6 

ℎ[𝑛] 
   

2 −1̂ 1 0 0 2 1 
 

𝑥[𝑛] 
 

3 2 0 2̂ 2 
     

𝑥[𝑛]ℎ[−1] 6 4 0 4 4 
      

𝑥[𝑛]ℎ[0] 
 

−3 −2 0 −2 −2 
     

𝑥[𝑛]ℎ[1]     3 2 0 2 2         

𝑥[𝑛]ℎ[2]       0 0 0 0 0       

𝑥[𝑛]ℎ[3]         0 0 0 0 0     

𝑥[𝑛]ℎ[4]           6 4 0 4 4   

𝑥[𝑛]ℎ[5]             3 2 0 2 2 

𝑦[𝑛] 6 1 1 6 2̂ 6 9 2 4 6 2 

 

Observe that each 𝑦[𝑛] of the analytical solution 

corresponds to each column sum in the above solution. 

Also note that the multiplication is started from right to left 

in this case rather than the usual multiplication from left to 

right (as in the first example) and in [7]. Both methods give 

the same result, however, with this method the 𝑛 = 0 sample 

of both convoluted signals are visibly aligned with that of the 

convolution sum obtained. 

In addition, in [1] Example 9.9 (pp. 594-595), a sliding 

tape method is presented, intended as an alternative to 

graphical convolution but has not been as popular. The table 

below presents the polynomial multiplication solution to [1] 

Example 9.9. In the solution, each summed column 

corresponds to the 𝑐[𝑘] terms of the sliding tape method. 

 
 

𝑓[𝑘] 0̂ 1 2 3 4 5      

𝑔[𝑘] 1̂ 1 1 1 1 1      

 0 1 2 3 4 5      

 
 

0 1 2 3 4 5     

 
  

0 1 2 3 4 5    

 
  

 0 1 2 3 4 5   

     0 1 2 3 4 5  

      0 1 2 3 4 5 

𝑐[𝑘] 0̂ 1 3 6 10 15 15 14 12 9 5 

 

Clearly, this is the same solution as that obtained from the 

sliding tape method.  

In addition, a table of convolution sums is presented [1] (p. 

590) to aid in the calculation of analytical convolution. 

C. Z-transform Example 

In [8], it is shown that if a closed form solution is not 

necessary and the sequences are finite, it is not necessary to 

apply the Z-transform before vector multiplication in order to 

simplify the computation of the convolution sum. There 

vector multiplication was done directly, and the same solution 

was obtained. Here the polynomial multiplication (rather than 

vector multiplication) will be applied directly to obtain the 

same solution as the Z-transform approach. To this end, 

consider the following example: compute the convolution of 

 

𝑥1[𝑛] = {−2, 1̂, 3,2};     𝑥2[𝑛] = {
1, 0 ≤ 𝑛 ≤ 3
0, otherwise

 

 

The Z-transform solution approach is as follows:  

Step 1: calculate Z-transform of both signals 

𝑋1(𝑧) = −2𝑧 + 1 + 3𝑧−1 + 2𝑧−2 

 

𝑋2(𝑧) = 1 + 𝑧−1 + 𝑧−2 + 𝑧−3 

 

Step 2: multiply both transforms to obtain: 

  

𝑋(𝑧) = 𝑋1(𝑧)𝑋2(𝑧) 

 

as follows: 
 

−2𝑧 1 3𝑧−1 +2𝑧−2 
   

 1 +𝑧−1 +𝑧−2 +𝑧−3  
 

−2𝑧 −2 −2𝑧−1 −2𝑧−2 
 

 
 

 
1 +𝑧−1 +𝑧−2 +𝑧−3   

  +3𝑧−1 +3𝑧−2 +3𝑧−3 +3𝑧−4  
  

 +2𝑧−2 +2𝑧−3 +2𝑧−4 +2𝑧−5 

−2𝑧 −1 +2𝑧−1 +4𝑧−2 +6𝑧−3 +5𝑧−4 +2𝑧−5 

 

Step 3: obtain the convolution sum as the coefficients of 

𝑋(𝑧): 

 

𝑥[𝑛] = [−2, −1̂, 2, 4,6,5,2] 

 

The direct polynomial multiplication solution to the 

example is presented below. 

 
 

𝑥1[𝑛] −2 1̂ 3 2    

𝑥2[𝑛] 1̂ 1 1 1    

 −2 −2 −2 −2    

 
 

1 1 1 1   

 
  

3 3 3 3  

    2 2 2 2 

𝑥[𝑛] −2 −1̂ 2 4 6 5 2 

 

The comparison of the solutions obtained using the various 

approaches and the complexities involved is evident in the 

examples seen in this section.  

 

III. DECONVOLUTION 

Deconvolution is the process of recovering one of the 

original signals of a convolution sum, given the sum and one 

of the original signals. It is useful in such problems as system 

identification in the sense that, knowing the output 

(convolution sum) of a system 𝑦[𝑛] and its impulse response 

ℎ[𝑛], one may determine the input 𝑥[𝑛]. A few textbooks e.g. 

[1, p. 615], [3, pp. 773-775] and [4, pp. 349-363], contain a 

basic overview of deconvolution. Homomorphic 

deconvolution is also described in [4]. 

Deconvolution may be approached as a long division 

problem (the opposite of multiplication). The long division 

approach in computing inverse Z-transforms is presented in 

[1]-[6].  
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Consider the previous Z-transform example (II C). Given  

𝑥2[𝑛] = [1̂, 1,1,1] and 𝑥[𝑛], one may obtain 𝑥1[𝑛] by long 

division as follows: 

 
 

−2       1      3       2 

1̂ 1 1 1 −2  − 1̂     2       4    6     5     2 

 
−2  − 2 − 2 − 2 

 
             1     4       6     6 

 
       1        1      1      1 

 
                  3      5     5     5  
                  3      3     3     3 

                            2    2     2     2 

                            2    2     2     2 

 
                           0     0      0    0    

 

In the above example one of the sequences is causal. 

Consider the finite sequence example (II B) in which ℎ[𝑛] and 

𝑦[𝑛] are non-causal. Given ℎ[𝑛] = [2, −1̂, 1,0,0,2,1] and 

𝑦[𝑛], 𝑥[𝑛] is obtained by long division as follows: 

 
 

3    2    0    2   2 

2 − 1̂ 10021 6    1    1    6    2̂    6    9    2    4    6    2 
 

6 − 3   3   0     0    6    3 

 
      4 − 2  6    2     0    6    2 

 
      4 − 2  2    0     0    4    2 

 
          0   4    2     0    2    0    4    

               0   0    0     0   0    0     0 
 

                    4     2     0   0     0    4   6  

               4 − 2   2    0    0    4    2 

                         4 − 2   0    0   0    4   2  

                              4 − 2   0    0   0    4   2 

 

To determine the 𝑛 = 0 point in the dividend 𝑥[𝑛] subtract 

the number of 𝑛 < 0 points of the numerator 𝑦[𝑛] from that 

of the denominator ℎ[𝑛]. The absolute value of the difference 

is the number of 𝑛 < 0 points in 𝑥[𝑛]. In this case 𝑥[𝑛] has 

4 − 1 = 3 𝑛 < 0 points, therefore  𝑥[𝑛] = [3,2,0, 2̂, 2]. 

 

IV. CIRCULAR (PERIODIC) CONVOLUTION 

In [8], a vector multiplication approach was developed for 

the calculation of circular (periodic) and it was shown that the 

solution obtained is equivalent to the methods presented in 

the reviewed standard textbooks [1, p. 349-351, 651-652], [3, 

pp. 399-426], [4, pp. 471-474], and [5, pp. 676-687]. In this 

section the polynomial multiplication approach will be 

extended to circular convolution. 

The development is started by considering Exercise 7.8 in 

[4, p. 503], stated as follows. Calculate the circular 

convolution” 

 

𝑦[𝑛] = 𝑥1[𝑛] ⊛ 𝑥2[𝑛] 
 

of the sequences: 

 

𝑥1[𝑛] = [1̂, 2, 3, 1], 𝑥2[𝑛] = [4̂, 3, 2, 2] 

 

The above data shows that 𝑁 = 4. The analytical solution 

is obtained using the time-domain formula, equation (7.2.39) 

in [4] as follows: 

 

𝑦[𝑛] = ∑ 𝑥1[𝑘]𝑥2 [((𝑛 − 𝑘))
𝑁

]

3

𝑘=0

,   0 ≤ 𝑛 ≤ 3 

 

𝑦[0] = 𝑥1[0]𝑥2 [((0))
4
] + 𝑥1[1]𝑥2 [((−1))

4
] + 𝑥1[2]𝑥2 [((−2))

4
]

+ 𝑥1[3]𝑥2 [((−3))
4

] 

= 1 × 4 + 2 × 2 + 3 × 2 + 1 × 3 = 17 

 

𝑦[1] = 𝑥2 [((1))
4
] + 2𝑥2 [((0))

4
] + 3𝑥2 [((−1))

4
] + 𝑥2 [((−2))

4
]   

 

= 1 × 3 + 2 × 4 + 3 × 2 + 1 × 2 = 19  
 

𝑦[2] = 𝑥2 [((2))
4
] + 2𝑥2 [((1))

4
] + 3𝑥2 [((0))

4
] + 𝑥2 [((−1))

4
] 

= 1 × 2 + 2 × 3 + 3 × 4 + 1 × 2 = 22  
 

𝑦[3] = 𝑥2 [((3))
4
] + 2𝑥2 [((2))

4
] + 3𝑥2 [((1))

4
] + 𝑥2 [((0))

4
] 

= 1 × 2 + 2 × 2 + 3 × 3 + 1 × 4 = 19 

 

𝑦[𝑛] = {17̂, 19, 22, 19} 

 

The part of determining the circular shifting 𝑥2 [((𝑛 −

𝑘))
𝑁

] ,  0 ≤ 𝑛 ≤ 3 is not shown in the above solution, so, one 

may appreciate the added complexity in comparison to 

analytical linear convolution. 

Circular shifting is illustrated in [4] (p. 473) using a series 

of circular discs. It has been shown in [8] that one may 

represent the required circular shifting by using one disc as 

shown in Fig. 2. 

 

 
Fig. 2. From [8], circular shifting requires one clockwise pass from 𝑥2[3] to  

𝑥2[0] followed by another clockwise pass from  𝑥2[−1] to  𝑥2[−3], thus 

the sequence 𝑥2 [((𝑛 − 𝑘))
𝑁

] is 2,2,3,4,2,2,3. 

 

From the sequence, the polynomial multiplication solution 

is: 
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𝑛 − 𝑘 3 2 1 0 −1 −2 −3   

𝒙𝟐 [((𝒏 − 𝒌))
𝑵

] 2 2 3 4 2 2 3   

𝑥1[𝑛] 1 2 3 1      

 2 4 9 4     𝑦[3] = 19 

𝑥1[𝑛] → 
 

2 6 12 2    𝑦[2] = 22 

𝑥1[𝑛] → 
  

3 8 6 2   𝑦[1] = 19 

𝑥1[𝑛] → 
  

 4 4 6 3  𝑦[0] = 17 

 

Observe that direct multiplication is not applied here like 

the linear convolution, rather it is similar to the sliding tape 

method in [1] for linear convolution. At each stage the 

elements of 𝑥2 [((𝑛 − 𝑘))
𝑁

] and 𝑥1[𝑛] are multiplied just as 

a dot product, then the row sum is taken. Then 𝑥1[𝑛] is slid 

right one step for the next stage. The tabular presentation here 

is different from the approaches presented in the books and in 

[7]. 

It was also shown in [8] that it does not matter which 

direction the circular shifting is made-an anticlockwise pass 

from 𝑥2[−3] to 𝑥2[0] can also be made, followed by another 

anticlockwise pass from 𝑥2[1] to 𝑥2[3]. In this case 𝑥1[𝑛] is 

also taken anticlockwise (𝑥1[−𝑛]). The polynomial 

multiplication follows as: 

 

𝑛 − 𝑘 3 2 1 0 −1 −2 −3   

𝒙𝟐 [((𝒏 − 𝒌))
𝑵

] 3 2 2 4 3 2 2   

𝑥1[𝑛] 1 3 2 1      

 3 6 4 4     𝑦[0] = 17 

𝑥1[𝑛] → 
 

2 6 8 3    𝑦[1] = 19 

𝑥1[𝑛] → 
  

2 12 6 2   𝑦[2] = 22 

𝑥1[𝑛] → 
  

 4 9 4 2  𝑦[3] = 19 

 

Clearly, the solutions from all the approaches are the same.  

 

V. CONCLUSION 

The aim of this paper is to show that the convolution sum 

is equivalent to polynomial multiplication without carry, 

whether the sequences are finite or not, therefore, the problem 

can be reduced to a direct multiplication problem. 

Also, following [8], it is here reiterated that for finite 

sequences, polynomial multiplication can be done directly 

without the Z-transform to obtain the same convolution sum 

as the Z-transform approach. Thereby reducing complexity 

because it involves much fewer steps (only the last step of the 

Z-transform method). 

The polynomial multiplication approach presented is an 

additional tool that can be adopted for practice.  

As a part of future work, one may consider investigating 

simplified methods of solving CT convolution problems by 

hand. Topics such as circular correlation and circular 

autocorrelation can also be considered. Another topic is to 

investigate the computational complexities of the different 

approaches. 
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