
 EJECE, European Journal of Electrical Engineering and Computer Science

ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2021.6.2.422 Vol 6 | Issue 2 | March 2022 15

Abstract — Mobile application development services have

reached a higher level with APIs. Developers create and develop

applications for mobile devices, and they often rely on APIs for

connectivity. An API is the functions and methods in a library

that a programmer can call to ask it to do things for you; it's the

interface to the library. A library is a set of classes that a

programmer can use to solve a certain problem, but it doesn’t

change your code at a structural or architectural level. The

significance of libraries in the creation of mobile applications

cannot be overstated. Others can use the programmer's library,

created, and shared with the rest of the world, in their own

projects as a result of his efforts. In this paper, the programmer

uses Java Object-Oriented Programming to provide a way to

share code across platforms and gives the possibility to develop

native cross-platform mobile applications. The purpose of this

work is to create a taxi service library for developers using both

Android and iOS using Java programming with the help of

Intel’s Multi-OS Engine Framework, Retrofit, and GSON

utilities, which were also used in this project. In developing a

Java open-source project, the common conclusion the

programmer always ends up with is to share the produced

outcomes with the developer community, which should be the

least objective in the Java world.

Keywords — Android Development, Cross-Platform Library,

IOS Development, Java, Multi-OS Engine.

I. INTRODUCTION

Libraries are a great way to create modular code that can

be easily shared. Libraries are created and distributed as

packages. In Java applications, once such a library has been

created, managing, and deploying it is very convenient. To

share code across platforms using Java, write platform-

independent code and share it between Android and iOS with

the Multi-OS Engine framework, proposed by MIGERAN

and developed by Intel. The Multi-OS Engine is an open

source cross-platform framework that enables the

programmer to develop native mobile apps with only Java

expertise, without sacrificing native look-and-feel

performance. The programmer can reuse as much common

Java code as feasible while also add platform-specific UI

code for each platform [1].

Developing a library and sharing it with the world later on

so that others can make use of it in their projects is a good

idea. The programmer just needs to make sure to only use

APIs that are available on both Android and iOS. The

programmer must create an interface to access platform-

Submitted on February 24, 2022.
Published on March 17, 2022.

Dilkhaz Y. Mohammed, Software Engineering, Firat University, Elazig,

Turkey; Scientific Research Center, Duhok Polytechnic University,
Duhok, Iraq.

(e-mail: Dilkhaz.mohammed dpu.edu.krd).

specific functionality from the library and then create

Android and iOS implementations of that interface in their

projects, thereby speeding development [2], [3].

This research is mainly aimed at creating a taxi service

library that other developers might use in their Android and

iOS apps. Retrofit is responsible for handling responsive web

services. This powerful library makes it relatively easy to

fetch and upload JSON via a REST-based web service.

Retrofit uses the OKHTTP for making HTTP requests.

II. MULTI-OS ENGINE FRAMEWORK

Multi-OS Engine Framework allows developers to use

Java to create native mobile apps for Apple iOS and Android

devices that have the same appearance, feel, and performance

as native apps. The most intriguing aspect is that the

developed programs are compiled to native code and make

use of Java common code. It saves a lot of time for Android

developers who wish to create an iOS app as well. Its runtime

is based on Android's current ART, which is the runtime

component that executes Java programs on Android. ART

offers a range of characteristics that ensure that apps on iOS

devices run at their best. These following components are

included in a compiled Multi-OS Engine program (Fig. 1),

such as NatJGen, which allows you to generate Java code.

Fig. 1. Multi-OS Engine app components.

III. JAVA OBJECT ORIENTED PROGRAMMING

Every application in the Multi-OS Engine is written in

Peter A. Cooper, Computer Science, Sam Houston State University, Texas,
USA.

(e-mail: cooper shsu.edu).

@

@

Developing Cross-Platform Library Using

Intel Multi-OS Engine

Dilkhaz Y. Mohammed and Peter A. Cooper

 EJECE, European Journal of Electrical Engineering and Computer Science

ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2021.6.2.422 Vol 6 | Issue 2 | March 2022 16

Java. Java is a general purpose language that derives much of

its syntax from C and C++, but it has fewer low-level

facilities than either of them. Java is the language of choice

for creating Android apps. Java applications are typically

compiled to bytecode that can run on any Java virtual

machine (JVM), regardless of computer architecture.

IV. ANDROID STUDIO IDE

Android Studio is Google's official integrated development

environment; as the name implies, its primary use is Android

app development. It is based on Jet Brains' IntelliJ IDEA IDE.

Even though it's designed for Android development, it's also

a good fit for Multi-OS Engine because it's written in Java

and built with the Gradle system. Furthermore, it allows

Android developers to write both Android and iOS code in a

single IDE. Only an additional MOE plugin is required to

enable Multi-OS Engine.

V. PROPOSED METHODOLOGY

A. Overview

Almost every mobile app nowadays connects to the

internet to receive and send data. A programmer should learn

how to use RESTful web services because their proper

implementation is essential when developing modern apps.

Retrofit is a Java REST client. Once such a library has been

created, it is very easy to manage and deploy. However, to

share code across platforms using Java, to write platform-

independent code and share it between Android and iOS with

a Multi-OS Engine, Multi-OS Engine apps should have three

modules. The views of each platform should be separately

placed in two of these modules, and the third module is used

for including the shared views of the platforms. Both views

of Android and iOS do not have direct access to each other.

Essentially, these views should include only methods that are

in control of the UI, and minimizing these methods is highly

recommended. To write clean code and produce a separate

view, it is recommended to use the Model-View-Presenter

architecture see Fig. 3.

Fig. 2. The architecture of a Multi-OS Engine app.

In Android Studio, an application begins as an Android

project. The Multi-OS Engine configures the project to build

and run as an iOS app on the iOS simulator, which can be

accessed through Android Studio or a real device. Whenever

an iOS app is launched, the ART VM is started, and the

precompiled code is executed. It is completely integrated with

Android Studio, is hosted on Mac OS or Windows, and

contains all of the development tools required to create an

iOS app; the development process is illustrated in Fig. 3.

Fig. 3. Development process with multi-OS engine.

To begin with, the Android code is simple; it simply

obtains data and binds it to the UI. However, it truly requests

data asynchronously from an API via common module

methods and then displays it in the native UI. The second

module contains all of the shared logic for the application. It

is the main part of the project and contains all of the business

logic. This is the code that communicates with the REST API.

The final step in project setup is to create an iOS module that

contains all of the iOS code written in Java as well as the

entire Xcode project. The Android Studio Multi-OS Engine

plugin is required to bind the resulting UI to the rest of the

Java-coded app. However, the Multi-OS Engine and Java

communicate with the platform in a similar native tools

manner, the difference being only in the additional process of

transferring source code to native one, and everything else is

the same. That's why it's still required to have different code

for handling UI see Fig. 4.

Fig. 4. Multi-OS Engine interact with the platform.

Furthermore, it is critical to understand that Multi-OS

Engine and Java are not intended to replace existing native

development tools, but rather to extend them and enable

better code sharing and reuse. It is still necessary to use these

tools to develop apps, and native development for both

platforms is now available. These tools simply allow for

faster prototyping, which results in improved app behavior.

For example, if business logic changes, it is only changed

once and is reflected in both apps. Because both platforms

should behave similarly, testing becomes easier and faster. As

a result, logical bugs will not be platform-specific, and

finding and fixing them on one platform will be reflected on

another.

B. Proposed System

The app is available on an Android or iOS-based mobile

phone.

 EJECE, European Journal of Electrical Engineering and Computer Science

ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2021.6.2.422 Vol 6 | Issue 2 | March 2022 17

C. Workflow Diagram

The programmer presents a simplified diagram of the state

paths of an Android app. To request a ride for a passenger or

to view a passenger’s trip history, the passenger needs to

authenticate with Uber and authorize the app (have the rider

sign in and authorize the app to access their Uber account)

after authorization is completed. Users can make requests to

the Uber web service.

Fig. 5. Taxi service app interface.

Fig. 6. Workflow Diagram.

VI. CONCLUSION

Getting data from a RESTful API using these tools feels

like a breeze, and it gracefully handles many edge cases.

Retrofit makes it easier to handle multiple simultaneous

network requests, all with the safety of an advanced error

handling technique. It also allows programmers to avoid

boilerplate code. Java’s retrofit API call allows programmers

to call APIs while writing very few lines of code. Once a

programmer has implemented a package, he can publish it on

the official package repository so that other developers can

easily use it. The programmer can always come by and upload

new versions of his package, but the old ones will remain

available for users who are not yet due for an upgrade.

ACKNOWLEDGMENT

I would want to express my heartfelt gratitude to everyone

who has helped and encouraged me during the production of

this report; I couldn't have done it without their support and

direction. Prof. Dr. Peter Cooper, my supervisor, is to be

commended for giving me the opportunity to work on this

research study under his guidance.

CONFLICT OF INTEREST

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] Milaqi I. Cross platform library (Doctoral dissertation, Saxion).

[2] Salza P, Palomba F, Di Nucci D, De Lucia A, Ferrucci F. Third-party

libraries in mobile apps. Empirical Software Engineering, 2020 May;
25(3):2341-77.

[3] Salza P, Palomba F, Di Nucci D, D'Uva C, De Lucia A, Ferrucci F. Do
developers update third-party libraries in mobile apps? In Proceedings

of the 26th Conference on Program Comprehension, 2018, May 28 (pp.

255-265).
[4] Shah K, Sinha H, Mishra P. Analysis of cross-platform mobile app

development tools. In 2019 IEEE 5th International Conference for

Convergence in Technology (I2CT), 2019, Mar 29 (pp. 1-7). IEEE.
[5] You D, Hu M. A Comparative Study of Cross-platform Mobile

Application Development. Wellington, New Zealand.66.

[6] Davis AL. Modern programming made easy: using Java, Scala,
Groovy, and JavaScript. Apress; 2020 Jan 17.

[7] Zhan X, Fan L, Chen S, Wu F, Liu T, Luo X, Liu Y. At hunter: Reliable

version detection of third-party libraries for vulnerability identification
in android applications. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE), 2021, May 22 (pp. 1695-

1707). IEEE.
[8] Zhan X, Fan L, Liu T, Chen S, Li L, Wang H, Xu Y, and Luo X, Liu

Y. Automated third-party library detection for android applications:

Are we there yet? In 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2020, Sep 21 (pp. 919-

930). IEEE.

Dilkhaz Y. Mohammed was born in Iraq and

educated in both Iraq and Turkey, he has a BSc from
the University of Duhok (2004). In 2019, He

achieved a Master Degree in Software Engineering

at the University of FIRAT University.

Peter A. Cooper was born in the United Kingdom

and educated in both the UK and the US, Dr. Cooper

has an M.A. and Ph.D. from the University of
Missouri-Columbia (1993) and has taught 13 years in

secondary education and 18 years in higher

education. Dr. Cooper teaches Networking, Network
Security, Programming in Java and C++.

