##plugins.themes.bootstrap3.article.main##

To save excess power large scale energy storage is required to overcome the short term storage. The increasing demand of electricity and neglecting the excess energy presented the idea of Power to Gas (P2G), because gases can be stored economically for long time, while electricity cannot be stored economically for long time. P2G plays a vital role in enhancing large-scale integrated energy system in energy sector. The process of converting surplus electrical energy into gases and its planning in an integrated energy system for different purposes is significant for developing the technology. This paper reviewed the study of integrated energy system with the power to gas technology. The conversion technologies, basics, storage capacity and siting in integrated energy systems are analyzed for modeling which assesses to their suitability for applications. Coupling, aims, applications and economic analysis to enhance the performance of the system, balance the system and to offer better facilities to consumers are investigated. The large capacity of P2G system, can provide long term energy storage requirements. P2G need further research work to address the issues of cost minimization as it is very expensive technology, optimal location, economy, energy efficiency improvement and proper methodologies for integration.

Downloads

Download data is not yet available.

References

  1. J. Fang, J. Wen, Q. Zeng, X. Ai, and Z. Chen, ?Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems,? IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 188?198, 2017.
     Google Scholar
  2. S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, and D. Stolten, ?Power to Gas: Technological Overview, Systems Analysis and Economic Assessment for a Case Study in Germany,? Int. J. Hydrogen Energy, vol. 40, no. 12, pp. 4285?4294, 2015.
     Google Scholar
  3. G. Reiter, ?Power-to-Gas,? First Edit., Wiley-VCH Verlag GmbH & Co.KGaA, 2016, pp. 357?368.
     Google Scholar
  4. Stephen Clegg and Pierluigi Mancarella, ?Integrated Modelling and Assessment of the Operational Impact of Power-to-Gas (P2G) on Electrical and Gas Transmission Networks,? IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1234?1244, 2015.
     Google Scholar
  5. Y. Li, W. Liu, M. Shahidehpour, F. Wen, K. Wang, and Y. Huang, ?Optimal Operation Strategy for Integrated Natural Gas Generating Unit and Power-to-Gas Conversion Facilities,? IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1870?1879, 2018.
     Google Scholar
  6. A. Lewandowska-Bernat and U. Desideri, ?Opportunities of Power-to-Gas Technology,? Energy Procedia, vol. 105, pp. 4569?4574, 2017.
     Google Scholar
  7. H. F. and Q. C. J. Liu, H. Zhong, K. Zeng, ?Optimal Scheduling of Multiple Energy System Considering Power to Gas Unit,? in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, 2017, pp. 1?6.
     Google Scholar
  8. J. H. Huang, H. S. Zhou, Q. H. Wu, S. W. Tang, B. Hua, and X. X. Zhou, ?Assessment of an Integrated Energy System Embedded with Power-to-Gas Plant,? IEEE PES Innov. Smart Grid Technol. Conf. Eur., pp. 196?201, 2016.
     Google Scholar
  9. J. Kotowicz, D. W?cel, and M. Jurczyk, ?Analysis of Component Operation in Power-to-Gas-to-Power Installations,? Appl. Energy, vol. 216, no. September 2017, pp. 45?59, 2018.
     Google Scholar
  10. J. Vandewalle, K. Bruninx, and W. D?Haeseleer, ?Effects of Large-Scale Power to Gas Conversion on the Power, Gas and Carbon Sectors and their Interactions,? Energy Convers. Manag., vol. 94, pp. 28?39, 2015.
     Google Scholar
  11. M. Jentsch, T. Trost, and M. Sterner, ?Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario,? Energy Procedia, vol. 46, pp. 254?261, 2014.
     Google Scholar
  12. D. M. O. Esteybar, R. G. Rubio-Barros, and A. Vargas, ?Large Storage Facilities Valuation in Integrated Planning of Natural Gas and Power Systems,? 2016 IEEE PES Transm. Distrib. Conf. Expo. Am. PES T D-LA 2016, 2017.
     Google Scholar
  13. M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, ?Power to Gas Projects Review: Lab, Pilot and Demo Plants for Storing Renewable Energy and CO2,? Renew. Sustain. Energy Rev., vol. 69, no. January 2016, pp. 292?312, 2017.
     Google Scholar
  14. M. A. Ancona et al., ?Thermal integration of a high-temperature co-electrolyzer and experimental methanator for Power-to-Gas energy storage system,? Energy Convers. Manag., vol. 186, no. March, pp. 140?155, 2019.
     Google Scholar
  15. B. Simonis and M. Newborough, ?Sizing and Operating Power-to-Gas Systems to Absorb Excess Renewable Electricity,? Int. J. Hydrogen Energy, vol. 42, no. 34, pp. 21635?21647, 2017.
     Google Scholar
  16. N. Moskalenko, P. Lombardi, and P. Komarnicki, ?Multi-Criteria Optimization for Determining Installation Locations for the Power-to-Gas Technologies,? IEEE Power Energy Soc. Gen. Meet., vol. 2014-Octob, no. October, pp. 1?5, 2014.
     Google Scholar
  17. Q. Zeng, J. Fang, Z. Chen, J. Li, and B. Zhang, ?A Multistage Coordinative Optimization for Sitting and Sizing P2G Plants in an Integrated Electricity and Natural Gas System,? 2016 IEEE Int. Energy Conf. ENERGYCON 2016, pp. 0?5, 2016.
     Google Scholar
  18. B. Odetayo, J. Maccormack, W. D. Rosehart, and H. Zareipour, ?Integrated Planning of Natural Gas and Electricity Distribution Networks with the Presence of Distributed Natural Gas Fired Generators,? IEEE Power Energy Soc. Gen. Meet., vol. 2016-Novem, 2016.
     Google Scholar
  19. S. Hecq, Y. Bouffioulx, P. Doulliez, and P. Saintes, ?The Integrated Planning of the Natural Gas and Electricity Systems Under Market Conditions,? 2001 IEEE Porto Power Tech Proc., vol. 1, pp. 467?471, 2001.
     Google Scholar
  20. I. Van Beuzekom, M. Gibescu, P. Pinson, and J. G. Slootweg, ?Optimal Planning of Integrated Multi-Energy Systems,? 2017 IEEE Manchester PowerTech, Powertech 2017, vol. 1, 2017.
     Google Scholar
  21. C. A. Saldarriaga-Cortes, H. Salazar, R. Moreno, and G. Jimenez-Estevez, ?Integrated Planning of Electricity and Natural Gas Systems Under Uncertain Hydro Inflows: A Multi-Objetive Approach,? IEEE Power Energy Soc. Gen. Meet., vol. 2017-Janua, pp. 1?5, 2017.
     Google Scholar
  22. C. Shao, M. Shahidehpour, X. Wang, X. Wang, and B. Wang, ?Integrated Planning of Electricity and Natural Gas Transportation Systems for Enhancing the Power Grid Resilience,? IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4418?4429, 2017.
     Google Scholar
  23. I. J. Perez-Arriaga, A. C. Z. de Souza, C. Unsihuay-Vila, P. P. Balestrassi, and J. W. Marangon-Lima, ?A Model to Long-Term, Multiarea, Multistage and Integrated Expansion Planning of Electricity and Natural Gas Systems,? IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1154?1168, 2010.
     Google Scholar
  24. B. Odetayo, M. Kazemi, J. MacCormack, W. D. Rosehart, H. Zareipour, and A. R. Seifi, ?A Chance Constrained Programming Approach to the Integrated Planning of Electric Power Generation, Natural Gas Network and Storage,? IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6883?6893, 2018.
     Google Scholar
  25. F. Barati, H. Seifi, A. Nateghi, M. S. Sepasian, M. Shafie-Khah, and J. P. S. Catal?o, ?An Integrated Generation, Transmission and Natural Gas Grid Expansion Planning Approach for Large Scale Systems,? IEEE Power Energy Soc. Gen. Meet., vol. 2015-Septe, pp. 1?5, 2015.
     Google Scholar
  26. A. J. C. and R. S. B. Zhao, ?Coordinated Expansion Planning of Natural Gas and Electric Power System,? IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3064?3075, 2018.
     Google Scholar
  27. F. Barati, M. S. Sepasian, M. Shafie-khah, J. P. S. Catalao, A. Nateghi, and H. Seifi, ?Multi-Period Integrated Framework of Generation, Transmission and Natural Gas Grid Expansion Planning for Large-Scale Systems,? IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2527?2537, 2014.
     Google Scholar
  28. B. Odetayo, J. MacCormack, W. D. Rosehart, and H. Zareipour, ?A Chance Constrained Programming Approach to Integrated Planning of Distributed Power Generation and Natural Gas Network,? Electr. Power Syst. Res., vol. 151, pp. 197?207, 2017.
     Google Scholar
  29. C. A. Saldarriaga, R. A. Hincapie, and H. Salazar, ?An Integrated Expansion Planning Model of Electric and Natural Gas Distribution Systems Considering Demand Uncertainty,? IEEE Power Energy Soc. Gen. Meet., vol. 2015-Septe, no. 978, 2015.
     Google Scholar
  30. C. Borraz-S?nchez, R. Bent, S. Backhaus, S. Blumsack, H. Hijazi, and P. Van Hentenryck, ?Convex Optimization for Joint Expansion Planning of Natural Gas and Power Systems,? Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2016-March, pp. 2536?2545, 2016.
     Google Scholar
  31. N. Van Bracht and A. Moser, ?Generation Expansion Planning Under Uncertainty Considering Power-to-Gas Technology,? Int. Conf. Eur. Energy Mark. EEM, 2017.
     Google Scholar
  32. A. Mazza, E. Bompard, and G. Chicco, ?Applications of Power to Gas Technologies in Emerging Electrical Systems,? Renew. Sustain. Energy Rev., vol. 92, no. January 2017, pp. 794?806, 2018.
     Google Scholar
  33. S. S. Al-zakwani, A. Maroufmashat, A. Mazouz, M. Fowler, and A. Elkamel, ?Allocation of Ontario?s Surplus Electricity to Different Power to Gas Applications,? energies, no. 2017, 2019.
     Google Scholar
  34. H. S. de Boer, L. Grond, H. Moll, and R. Benders, ?The Application of Power-to-Gas, Pumped Hydro Storage and Compressed Air Energy Storage in an Electricity System at Different Wind Power Penetration Levels,? Energy, vol. 72, pp. 360?370, 2014.
     Google Scholar
  35. J. Qiu et al., ?Multi-Stage Flexible Expansion Co-Planning Under Uncertainties in a Combined Electricity and Gas Market,? IEEE Trans. Power Syst., vol. 30, no. 4, pp. 2119?2129, 2015.
     Google Scholar
  36. G. Guandalini, S. Campanari, and M. C. Romano, ?Power-to-Gas Plants and Gas Turbines for Improved Wind Energy Dispatchability: Energy and Economic Assessment,? Appl. Energy, vol. 147, pp. 117?130, 2015.
     Google Scholar
  37. R. C. McKenna et al., ?The Future Role of Power-to-Gas in the Energy Transition: Regional and Local Techno-Economic Analyses in Baden-W?rttemberg,? Appl. Energy, vol. 212, no. November 2017, pp. 386?400, 2018.
     Google Scholar
  38. D. Cartes, J. Ordonez, J. Harrington, D. Cox, and R. Meeker, ?Novel Integrated Energy Systems and Control Methods with Economic Analysis for Integrated Community Based Energy Systems,? 2007 IEEE Power Eng. Soc. Gen. Meet. PES, vol. 32310, pp. 1?6, 2007.
     Google Scholar
  39. T. K. S. and D. C. J. B. Nunes, N. Mahmoudi, ?Generation Expansion Planning in Queensland Under Rooftop Photovoltaic Penetration and Gas Market Uncertainties,? in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane,QLD, 2015, pp. 1?5.
     Google Scholar
  40. C. Unsihuay, J. W. M. Lima, and A. C. Z. De Souza, ?Modeling the Integrated Natural Gas and Electricity Optimal Power Flow,? 2007 IEEE Power Eng. Soc. Gen. Meet. PES, pp. 1?7, 2007.
     Google Scholar
  41. Z. Wei, S. Chen, H. Zang, G. Sun, and D. Wang, ?Steady State and Transient Simulation for Electricity-Gas Integrated Energy Systems by Using Convex Optimisation,? IET Gener. Transm. Distrib., vol. 12, no. 9, pp. 2199?2206, 2018.
     Google Scholar
  42. I. Marjanovic, T. Bongers, J. Lichtinghagen, and A. Moser, ?Influence of Power-to-Gas-Technology on Unit Commitment and Power System Operation,? 2017 6th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2017, pp. 536?540, 2017.
     Google Scholar
  43. D. M. Ojeda-Esteybar, R. G. Rubio-Barros, O. Ano, and A. Vargas, ?Integration of Electricity and Natural Gas Systems-Identification of Coordinating Parameters,? 2014 IEEE PES Transm. Distrib. Conf. Expo. PES T D-LA 2014 - Conf. Proc., vol. 2014-Octob, 2014.
     Google Scholar
  44. C. Unsihuay, J. W. Marangon-Lima, and A. C. Zambroni De Souza, ?Short-Term Operation Planning of Integrated Hydrothermal and Natural Gas Systems,? 2007 IEEE Lausanne POWERTECH, Proc., pp. 1410?1416, 2007.
     Google Scholar