Dalian Polytechnic University, China
Dalian Polytechnic University, China
Dalian Polytechnic University, China

Article Main Content

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.

References

  1. D. ?elikler, ?Awareness about renewable energy of pre-service science teachers in Turkey,? Renew. Energy, vol. 60, pp. 343?348, 2013, doi: 10.1016/j.renene.2013.05.034.
     Google Scholar
  2. N. Jenkins, J. B. Ekanayake, and G. Strbac, Distributed generation. 2010.
     Google Scholar
  3. Y. Menchafou, H. El Markhi, M. Zahri, and M. Habibi, ?Impact of distributed generation integration in electric power distribution systems on fault location methods,? Proc. 2015 IEEE Int. Renew. Sustain. Energy Conf. IRSEC 2015, no. 1998, 2016, doi: 10.1109/IRSEC.2015.7455137.
     Google Scholar
  4. K. A. Nigim and L. W. J, ?Micro grid integration opportunities and challenges,? IEEE Power Eng. Soc. Gen. Meet. (PES ?07), pp. 1?6, 2007.
     Google Scholar
  5. D. T. Ton and M. A. Smith, ?The U.S. Department of Energy?s Microgrid Initiative,? Electr. J., 2012, doi: 10.1016/j.tej.2012.09.013.
     Google Scholar
  6. F. Li, Z. Lin, Z. Qian, and J. Wu, ?Active DC bus signaling control method for coordinating multiple energy storage devices in DC microgrid,? 2017 IEEE 2nd Int. Conf. Direct Curr. Microgrids, ICDCM 2017, pp. 221?226, 2017, doi: 10.1109/ICDCM.2017.8001048.
     Google Scholar
  7. S. A. Gopalan, V. Sreeram, H. H. C. Iu, Z. Xu, Z. Y. Dong, and K. P. Wong, ?Fault analysis of an islanded Multi-microgrid,? 2012, doi: 10.1109/PESGM.2012.6344872.
     Google Scholar
  8. A. Hooshyar and R. Iravani, ?Microgrid Protection,? Proc. IEEE, vol. 105, no. 7, pp. 1332?1353, 2017, doi: 10.1109/JPROC.2017.2669342.
     Google Scholar
  9. H. Andrei, M. Gaiceanu, M. Stanculescu, I. Marinescu, and P. C. Andrei, ?Microgrid Protection,? in Power Systems, 2020.
     Google Scholar
  10. D. E. Olivares et al., ?Trends in microgrid control,? IEEE Trans. Smart Grid, 2014, doi: 10.1109/TSG.2013.2295514.
     Google Scholar
  11. A. Parisio, E. Rikos, and L. Glielmo, ?A model predictive control approach to microgrid operation optimization,? IEEE Trans. Control Syst. Technol., 2014, doi: 10.1109/TCST.2013.2295737.
     Google Scholar
  12. M. Mahmoodi, P. Shamsi, and B. Fahimi, ?Economic dispatch of a hybrid microgrid with distributed energy storage,? IEEE Trans. Smart Grid, 2015, doi: 10.1109/TSG.2014.2384031.
     Google Scholar
  13. M. Nemati, M. Braun, and S. Tenbohlen, ?Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming,? Appl. Energy, 2018, doi: 10.1016/j.apenergy.2017.07.007.
     Google Scholar
  14. R. B. Hytowitz and K. W. Hedman, ?Managing solar uncertainty in microgrid systems with stochastic unit commitment,? Electr. Power Syst. Res., 2015, doi: 10.1016/j.epsr.2014.08.020.
     Google Scholar
  15. U. D. E. T. D. Helsinki, Faisal A . Mohamed Helsinki University of Technology Control Engineering Faisal A . Mohamed. 2008.
     Google Scholar
  16. M. Rahimian, L. D. Iulo, and J. M. P. Duarte, ?A Review of Predictive Software for the Design of Community Microgrids,? Journal of Engineering (United Kingdom), vol. 2018. 2018, doi: 10.1155/2018/5350981.
     Google Scholar
  17. S. Sen and V. Kumar, ?Microgrid modelling: A comprehensive survey,? Annual Reviews in Control, vol. 46, no. xxxx. Elsevier Ltd, pp. 216?250, 2018, doi: 10.1016/j.arcontrol.2018.10.010.
     Google Scholar
  18. T. Porsinger, P. Janik, Z. Leonowicz, and R. Gono, ?Component modelling for microgrids,? 2016, doi: 10.1109/EEEIC.2016.7555869.
     Google Scholar
  19. S. Hussain Basha and P. Venkatesh, ?Control of Solar Photovoltaic (Pv) Power Generation in Grid-Connected and Islanded Microgrids,? Int. J. Eng. Reseaerch Gen. Sci., vol. 3, no. 3, pp. 121?141, 2015.
     Google Scholar
  20. V. S. Bugade and P. K. Katti, ?Dynamic modelling of microgrid with distributed generation for grid integration,? in International Conference on Energy Systems and Applications, ICESA 2015, 2016, no. Icesa, pp. 103?107, doi: 10.1109/ICESA.2015.7503321.
     Google Scholar
  21. B. V. Rajanna, S. V. N. L. Lalitha, G. Joga Rao, and S. K. Shrivastava, ?Solar photovoltaic generators with MPPT and battery storage in microgrids,? Int. J. Power Electron. Drive Syst., 2016, doi: 10.11591/ijpeds.v7.i3.pp. 701-712.
     Google Scholar
  22. R. J. Vijayan, C. Subrahmanyam, and R. Roy, ?Dynamic modeling of microgrid for grid connected and intentional islanding operation,? 2012, doi: 10.1109/APCET.2012.6302055.
     Google Scholar
  23. T. L. Lee and P. T. Cheng, ?Design of a new cooperative harmonic filtering strategy for distributed generation interface converters in an islanding network,? IEEE Trans. Power Electron., 2007, doi: 10.1109/TPEL.2007.904200.
     Google Scholar
  24. A. Micallef, M. Apap, C. Spiteri-Staines, J. M. Guerrero, and J. C. Vasquez, ?Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids,? IEEE Trans. Smart Grid, 2014, doi: 10.1109/TSG.2013.2291912.
     Google Scholar
  25. International Electrotechnical Commission, ?IEC 61727:Photovoltaic (PV) systems ? Characteristics of the utility interface,? Order A J. Theory Ordered Sets Its Appl., 2004.
     Google Scholar
  26. IEEE, ?IEEE Application Guide for IEEE Std 1547TM, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,? IEEE Std 1547.2-2008, 2009, doi: 10.1109/IEEESTD.2008.4816078.
     Google Scholar
  27. P. Singh, S. Suryanarayanan, S. Chakraborty, and D. Zimmerle, ?THESIS REAL-TIME MODELING AND SIMULATION OF DISTRIBUTION FEEDER AND DISTRIBUTED RESOURCES Submitted by,? Colorado State University. Libraries, 2015.
     Google Scholar
  28. J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, ?A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,? IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1205?1213, 2004, doi: 10.1109/TPEL.2004.833451.
     Google Scholar
  29. J. Miret, M. Castilla, J. Matas, J. M. Guerrero, and J. C. Vasquez, ?Selective harmonic-compensation control for single-phase active power filter with high harmonic rejection,? IEEE Trans. Ind. Electron., 2009, doi: 10.1109/TIE.2009.2024662.
     Google Scholar
  30. J. M. Corr?a, S. Chakraborty, M. G. Sim?es, and F. A. Farret, ?A Single Phase High Frequency AC Microgrid with an Unified Power Quality Conditioner,? 2003.
     Google Scholar
  31. A. Karabiber, C. Keles, A. Kaygusuz, B. B. Alagoz, and M. Akcin, ?Power converters modeling in Matlab/Simulink for microgrid simulations,? in 4th International Istanbul Smart Grid Congress and Fair, ICSG 2016, 2016, no. April, doi: 10.1109/SGCF.2016.7492418.
     Google Scholar
  32. R. C. ury, Tilok Boruah, ?Design of a Micro-Grid System in Matlab/Simulink,? Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 07, pp. 5262?5269, 2015, doi: 10.15680/ijirset.2015.0407030.
     Google Scholar
  33. T. Porsinger, P. Janik, Z. Leonowicz, and R. Gono, ?Modelling and optimization in microgrids,? Energies, vol. 10, no. 4, pp. 1?22, 2017, doi: 10.3390/en10040523.
     Google Scholar
  34. A. Micallef, M. Apap, C. Spiteri-Staines, and J. M. Guerrero, ?Mitigation of Harmonics in Grid-Connected and Islanded Microgrids Via Virtual Admittances and Impedances,? IEEE Trans. Smart Grid, 2017, doi: 10.1109/TSG.2015.2497409.
     Google Scholar
  35. ?Resources | PES Test Feeder.? https://site.ieee.org/pes-testfeeders/resources/ (accessed Apr. 10, 2020).
     Google Scholar
  36. A. M. Stanisavljevi?, V. A. Kati?, B. P. Dumni?, and B. P. Popadi?, ?A brief overview of the distribution test grids with a distributed generation inclusion case study,? Serbian J. Electr. Eng., vol. 15, no. 1, pp. 115?129, 2018, doi: 10.2298/SJEE1801115S.
     Google Scholar
  37. ?IEEE 13 Node Test Feeder - MATLAB & Simulink.? https://www.mathworks.com/help/physmod/sps/examples/ieee-13-node-test-feeder.html (accessed Apr. 10, 2020).
     Google Scholar
  38. M. G. Villalva, T. G. De Siqueira, and E. Ruppert, ?Voltage regulation of photovoltaic arrays: Small-signal analysis and control design,? IET Power Electron., vol. 3, no. 6, pp. 869?880, 2010, doi: 10.1049/iet-pel.2008.0344.
     Google Scholar
  39. E. Irmak and N. G?ler, ?A model predictive control-based hybrid MPPT method for boost converters,? Int. J. Electron., vol. 107, no. 1, pp. 1?16, 2020, doi: 10.1080/00207217.2019.1582715.
     Google Scholar
  40. E. Irmak and N. G?ler, ?Application of a high efficient voltage regulation system with MPPT algorithm,? Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 703?712, Jan. 2013, doi: 10.1016/j.ijepes.2012.08.011.
     Google Scholar
  41. M. A. Fouad, M. A. Badr, and M. M. Ibrahim, ?Modeling of Micro-grid System Components using Matlab/Simulink,? Glob. Sci. Journals, vol. 5, no. 5, pp. 163?177, 2017.
     Google Scholar
  42. G. S. Stavrakakis and G. N. Kariniotakis, ?A general simulation algorithm for the accurate assessment of ISOLATED Diesel - Wind Turbines Systems Interaction. Part I: A General Multimachine Power System Model.,? IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 577?583, 1995, doi: 10.1109/60.464885.
     Google Scholar
  43. M. Theses and H. A. Saleem, ?Microgrid Modeling and Grid Interconnection Studies,? p. 59, 2014, doi: 10.1177/0361684314554917.
     Google Scholar
  44. O. Tremblay and L. A. Dessaint, ?Experimental validation of a battery dynamic model for EV applications,? 24th Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp. Exhib. 2009, EVS 24, vol. 2, pp. 930?939, 2009.
     Google Scholar
  45. Y. C. Liu, ?Improvement of available battery capacity in electric vehicles,? J. Power Electron., vol. 13, no. 3, pp. 497?506, 2013, doi: 10.6113/JPE.2013.13.3.497.
     Google Scholar
  46. H. Bai and C. Mi, ?The impact of bidirectional DC-DC converter on the inverter operation and battery current in hybrid electric vehicles,? in 8th International Conference on Power Electronics - ECCE Asia: ?Green World with Power Electronics?, ICPE 2011-ECCE Asia, 2011, pp. 1013?1015, doi: .1109/ICPE.2011.5944686.
     Google Scholar
  47. S. A. O. Da Silva, E. Tomizaki, R. Novochadlo, and E. A. A. Coelho, ?PLL structures for utility connected systems under distorted utility conditions,? 2006, doi: 10.1109/IECON.2006.347416.
     Google Scholar
  48. V. Kaura and V. Blasko, ?Operation of a phase locked loop system under distorted utility conditions,? IEEE Trans. Ind. Appl., 1997, doi: 10.1109/28.567077.
     Google Scholar
  49. Y. Wang, Z. Lu, and Y. Min, ?Analysis and comparison on the control strategies of multiple voltage source converters in autonomous microgrid,? 2010, doi: 10.1049/cp.2010.0294.
     Google Scholar
  50. I. Vechiu, O. Curea, A. Llaria, and H. Camblong, ?Control of power converters for microgrids,? COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 2011, doi: 10.1108/03321641111091575.
     Google Scholar
  51. C. K. Sao and P. W. Lehn, ?Intentional islanded operation of converter fed microgrids,? 2006, doi: 10.1109/pes.2006.1708862.
     Google Scholar
  52. R. H. Furlan, R. P. Bataglioli, W. C. Carvalho, and M. Oleskovicz, ?Optimal allocation of distributed generation in a radial distribution network for losses reduction and voltage profile improvement,? SBSE 2018 - 7th Brazilian Electr. Syst. Symp., pp. 1?6, 2018, doi: 10.1109/SBSE.2018.8395932.
     Google Scholar
  53. A. Elmitwally, ?A new algorithm for allocating multiple distributed generation units based on load centroid concept,? Alexandria Eng. J., vol. 52, no. 4, pp. 655?663, 2013, doi: 10.1016/j.aej.2013.08.011.
     Google Scholar