##plugins.themes.bootstrap3.article.main##

A number of intelligent applications demand multiple item detection and tracking as vital elements. Although object search links the identified object through a series of frames, object detection pinpoints the thing's location in a scene. Over the last few decades, a wide range of approaches has been created, which may be divided into 2D and stereo-based 3D techniques. When used in limited circumstances, most of these strategies yield trustworthy findings. These limiting presumptions are used to determine the number of complex elements that object detection and tracking naturally entail. Environmental factors, object appearance, flow density, backdrop colour intensity information, the amount of time an object is present in the scene, object occlusion, a scene's maximum number of things, etc., are among the most often held presumptions. In real-time applications, these approaches' dependability is not assured. A modern surveillance system needs reliable object identification and tracking in an open area.

Downloads

Download data is not yet available.

References

  1. Chau DP, Bremond F, Thonnat M. Object Tracking in Videos: Approaches and Issues. The International Workshop Rencontres UNS- UD (RUNSUD, Danang, Vietnam; 2013.
     Google Scholar
  2. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In The International Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, June 2005: 886-893.
     Google Scholar
  3. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In The Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), April 2003: pp. 511-518.
     Google Scholar
  4. Faradji F, Rezaie AH, Ziaratban M. A morphological-based license plate location. In Proceedings of IEEE International Conference on Image Processing, 2007: pp. 57-60.
     Google Scholar
  5. Zheng K, Zhao YX, Gu J, Hu QM. License plate detection using Haar- like features and histogram of oriented gradients. In Proceedings of IEEE International Symposium on Industrial Electronics, 2012: pp. 1502-1505.
     Google Scholar
  6. Wu HHP, Chen HH, Wu RJ, Shen DF. License plate extraction in low resolution video. In Proceedings of the 18th International Conference on Pattern Recognition, 2006: pp. 824?827.
     Google Scholar
  7. Kwon J, Lee KM, Park FC. Visual tracking via geometric particle filtering on the affine group with optimal importance functions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009: pp. 991-998.
     Google Scholar
  8. Wang N, Yeung D. Learning a deep compact image representation for visual tracking. Proceedings of 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013.
     Google Scholar
  9. Zhao J, Li Z. Particle filter based on Particle Swarm Optimization resampling for vision tracking. Elsevier Expert Syst. Appl., 2010; 37(12): 910-8914.
     Google Scholar
  10. Zhang B, Tian W, Jin Z. Robust appearance-guided particle filter for object tracking with occlusion analysis. Elsevier Int. J. Electron. Commun, 2008; 62(1): 24-32.
     Google Scholar
  11. Qin R, Liao S, Lei Z, Li SZ. Moving cast shadow removal based on local descriptors. ICPR, 2010.
     Google Scholar
  12. Martel-Brisson N, Zaccarin A. Learning and removing cast shadows through a multi distribution approach. TPAMI, 2007; 29(7): 1133-1146.
     Google Scholar
  13. Martel-Brisson N, Zaccarin A. Kernel-based learning of cast shadows from a physical model of light sources and surfaces for low-level segmentation. CVPR, 2008.
     Google Scholar
  14. Lee W, Lee G, Ban S-W, Jung I, Lee M. Intelligent video surveillance system using dynamic saliency map and boosted Gaussian mixture model. In International conference on neural information processing. Springer; 2011: pp. 557-564.
     Google Scholar
  15. Wang M, Qiao H, Zhang B. A new algorithm for robust pedestrian tracking based on manifold learning and feature selection. IEEE Transactions on Intelligent Transportation Systems, 2011; 12: 1195-1208.
     Google Scholar
  16. Zhang L, Li Y, Nevatia R. Global data association for multi-object tracking using network flows. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008: pp. 1-8.
     Google Scholar
  17. Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice. Springer; 2001.
     Google Scholar
  18. Seo H, Milanfar P. Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans. Pattern Anal. Mach. Intell., 2010; 32(9): 1688?1704.
     Google Scholar
  19. Henriques J, Caseiro R, Batista J. Globally optimal solution to multi- object tracking with merged measurements. In Proceedings / IEEE International Conference on Computer Vision. IEEE International Conference on Computer Vision, 2011.
     Google Scholar
  20. Huang Y, Essa I. Tracking multiple objects through occlusions. CVPR, 2005.
     Google Scholar
  21. Babenko, Yang M-H, Belongie S. Visual tracking with online multiple instance learning. CVPR, 2009.
     Google Scholar
  22. Dinh TB, Vo N, Medioni G. Context Tracker: Exploring Supporters and Distracters in Unconstrained Environments. CVPR, 2011.
     Google Scholar
  23. Mei X, Ling H. Robust Visual Tracking and Vehicle Classification via Sparse Representation. TPAMI, 2011; 33(11): 2259-2272.
     Google Scholar
  24. Yoshinaga S, Shimada A, Nagahara H, Taniguchi R, Background model based on intensity change similarity among pixels. In 19th Japan- Korea Joint Workshop on Frontiers of CV, Jan. 2013, pp. 276-280.
     Google Scholar
  25. Park D, Byun H. Object-wise multilayer background ordering for pubic area surveillance. In IEEE Int. Conf. AVSS, Sep. 2009: pp. 484-489.
     Google Scholar
  26. Evangelio RH, P?tzold M, Sikora T. Splitting gaussians in mixture models. In Proc. 9th IEEE Int. Conf. Advanced Video and Signal-Based Surveillance, Sep. 2012: pp. 300-305.
     Google Scholar
  27. Porikli F, Tuzel O. Bayesian background modeling for foreground detection. In Proc. ACM VSSN, Nov. 2005: pp. 55-58.
     Google Scholar
  28. Strauss O, Sidib D, Puech W. Quasi-continuous histogram based motion detection. Technical Report, LE2I; 2012.
     Google Scholar
  29. Lee DS. Effective gaussian mixture learning for video background subtraction. IEEE Trans. Patt. Anal. Mach. Intell., 2005; 27(5): 827-832.
     Google Scholar
  30. Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., Jun. 2006; 1: 798-805.
     Google Scholar
  31. Mei X, Ling H. Robust visual tracking using l1 minimization. In Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2009: pp. 1436-1443.
     Google Scholar
  32. Ross D, Lim J, Lin R, Yang M. Incremental learning for robust visual tracking. Int. J. Comput. Vis., 2008; 77(1): 125-141.
     Google Scholar
  33. Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In Proc. British Mach. Vis. Conf. (BMVC), 2006; 1: 47-56.
     Google Scholar
  34. Babenko B, Yang M-H, Belongie S. Visual tracking with online multiple instance learning. In Proc. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), Jun. 2009: pp. 983-990.
     Google Scholar
  35. Kwon J, Lee KM. Visual tracking decomposition. In Proc. IEEE Conf.Comput. Vis. Pattern Recog. (CVPR), Jun. 2010: pp. 1269-1276.
     Google Scholar
  36. Kwon J, Lee KM. Tracking by sampling trackers. In Proceedings of IEEE Int. Conf. Comput. Vis. (ICCV), Nov. 2011: pp. 1195-1202.
     Google Scholar
  37. Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Trans. Pattern Anal.Mach. Intell., 2012; 34(7): 1409-1422.
     Google Scholar
  38. Zhang T, Ghanem B, Liu S, Ahuja N, Robust visual tracking via multi-task sparse learning. In Proc. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), Jun. 2012: pp. 2042-2049.
     Google Scholar
  39. Zhang K, Zhang L, Yang M-H. Real-time compressive tracking. In Proc. Eur. Conf. Comput. Vis. (ECCV), 2012: pp. 864-877.
     Google Scholar
  40. Hare S, Saffari A, Torr PHS. Struck: Structured output tracking with kernels. In Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Nov. 2011: pp. 263-270.
     Google Scholar
  41. Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A. Part-based visual tracking with online latent structural learning. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), Jun. 2013: pp. 2363?2370.
     Google Scholar
  42. Fei M, Li J, Liu H. Visual tracking based on improved foreground detection and perceptual hashing. Neurocomputing, 2015; 152: 413-428.
     Google Scholar
  43. Fei M, Li J, Shao L, Ju Z, Ouyang G. Robust Visual Tracking Based on Improved Perceptual Hashing for Robot Vision. Int?l Conference on Intelligent Robotics and Applications, Springer; 2015: pp. 331-340.
     Google Scholar
  44. Kumar S, Yadav JS. Video object extraction and its tracking using background subtraction in complex environments, Recent Trends in Engineering and Material Sciences. Elsevier: Perspectives in Science, 2016; 8: 317-322.
     Google Scholar
  45. Huang S, Jiang S, Zhu X. Multi-object tracking via discriminative appearance modeling: Computer Vision and Image Understanding. Elsevier, 2016; 153: 77-87.
     Google Scholar
  46. Li Z, Gao S, Nai K. Robust object tracking based on adaptive templates matching via the fusion of multiple features, J. Vis. Commun. Image R, 2017; 44: 1-20.
     Google Scholar
  47. Tian S, Yuan F, Xia G-S. Multi-object tracking with inter-feedback between detection and tracking. Neurocomputing, 2016; 171: 768-780.
     Google Scholar
  48. Wang R, Sang N, Wang R, Jiang L. Detection and tracking strategy for license plate detection in video. Optik, 2014; 125: 2283-2288.
     Google Scholar
  49. Ahmadi K, Salari E. Small dim object tracking using frequency and spatial domain information. Pattern Recognition, 2016; 58: 227-234.
     Google Scholar
  50. Sardari F, Moghaddam ME. A hybrid occlusion free object tracking method using particle filter and modified galaxy based search meta-heuristic algorithm. Applied Soft Computing, 2017; 50: 280-299.
     Google Scholar
  51. Elafi I, Jedra M, Zahid N. Unsupervised detection and tracking of moving objects for video surveillance applications. Pattern Recognition Letters, 2016; 84: 70-77.
     Google Scholar
  52. Huerta I, Holte MB, Moeslund TB, Gonz?lez J. Chromatic shadow detection and tracking for moving foreground segmentation. Image and Vision Computing, 2015; 41: 42-53.
     Google Scholar
  53. Lee G, Mallipeddi R, Lee M. Trajectory-based vehicle tracking at low frame rates. Expert Systems with Applications, 2017; 80: 46-57.
     Google Scholar


Most read articles by the same author(s)